
UNIVERSITÄT LINZ
JOHANNES KEPLER JKU

Technisch-Naturwissenschaftliche
Fakultät

Model-and-Code Consistency Checking

MASTERARBEIT

zur Erlangung des akademischen Grades

Diplomingenieur

im Masterstudium

Informatik

Eingereicht von:

Markus Riedl Ehrenleitner, BSc.

Angefertigt am:

Institut für System Engineering und Automation

Beurteilung:

Univ.-Prof. Dr. Alexander Egyed M.Sc.

Mitwirkung:

Dipl.-Ing. Andreas Demuth

Linz, September, 2013

Kurzfassung

In modellgetriebener Entwicklung, erhöhen Designmodelle die Abstraktionsstufe

und erlauben es somit e�zient, ohne auf Implementierungsdetails Rücksicht

zu nehmen, zu modellieren. Bedauerlicherweise entwickeln sich beide Entwick-

lungsartefakte nicht nur häu�g sondern auch gleichzeitig, mit der Gefahr, dass

sich beide auseinander entwickeln. Obwohl Modell-zu-Quelltext Transformatio-

nen eingesetzt werden, um beide Artefakte zu synchronisieren, sind manuelle

führungslose Anpassungen notwendig. Daher verhindern diese nicht e�ektive

das Inkonsistenzen eingeführt werden. In dieser Arbeit wird daher ein Ansatz zu

Model-und-Quelltext Konsistenzprüfung vorgestellt. Der Ansatz erkennt Inkon-

sistenzen und informiert Entwickler über den Konsistenzstatus eines Projekts.

Ein automatisches Konsistenzprüfungsframework und 13 Konsistenzregeln für

UML und Java wurden während der Arbeit entwickelt. Das Framework wurde

in einer empirischen Studie, basierend auf 10 meist industriellen Projekten,

evaluiert. Die Resultate der Evaluierung zeigen einerseits die technische Mach-

barkeit und andererseits die Skalierbarkeit des Ansatzes.

i

Abstract

In model-driven engineering, design models raise the level of abstraction and

allow for e�cient designing without considering implementation details. Still,

it is crucial that design models and source code are in sync. Unfortunately,

both development artifacts do evolve not only frequently, but also concurrently

� which likely causes them to drift apart over time. Even though technologies

such as model-to-code transformations are commonly employed to keep design

models and source code synchronized, those technologies typically still require

unguided, manual adaptations. Hence, they do not e�ectively prevent incon-

sistencies from being introduced. In this paper, we present a novel approach

for checking consistency between design models and source code. The approach

detects inconsistencies instantly and informs developers about a project's con-

sistency status live during development. We developed an e�cient and fully

automated consistency checking framework and also provide a set of consis-

tency rules for UML and Java projects. The framework was evaluated in an

empirical study with 10 mostly industrial projects. The results showed that our

approach is technically feasible and also highly scalable.

ii

Contents

1 Introduction 1

2 Model-Driven Engineering 3

2.1 MDE Research . 3

2.2 Modeling Languages . 4

2.3 Separation of Concern . 4

2.4 Model Manipulation and Management 4

3 Running Example 6

3.1 Model and Code . 6

3.2 Evolution . 8

3.2.1 Field . 9

3.2.2 Sequence . 10

3.3 Contained Inconsistencies . 12

3.3.1 Field . 12

3.3.2 Method . 13

3.3.3 Sequence . 14

3.3.4 Statechart . 15

3.3.5 Statechart Uncertainty . 16

4 Principles of Model-and-Code-Consistency Checking 17

4.1 Explicit Consistency Rule . 17

4.1.1 Consistency Rules Prevent Drift 17

4.1.2 Consistency Rules Promote Convergence 18

4.1.3 Challenges . 18

4.2 Framework . 19

4.3 Rule Elements . 19

4.4 Artifact Integration . 21

4.4.1 Metamodel . 21

4.4.2 Navigation . 22

4.5 Incremental Consistency Checking 24

5 UML/Java Application 25

5.1 Metamodels and Navigation . 25

5.1.1 Implicit Navigation Links 26

5.1.2 Explicit Navigation Links 27

iii

5.2 Explicit Consistency Rules . 27

5.3 Incremental Evaluation . 30

5.3.1 Model Evaluation . 30

5.3.2 Code Evaluation . 31

6 Validation 32

6.1 Tool . 32

6.2 Case Study: UML and Java . 33

6.2.1 Projects . 33

6.2.2 Usability . 36

6.2.3 Computational Scalability 36

6.2.4 Memory Consumption . 37

6.3 Applicability and Limitations . 39

7 OCL Consistency Rules 41

7.1 Class Diagram . 41

7.1.1 AssociationConform . 41

7.1.2 AssociationFieldConform 41

7.1.3 ClassFieldConform . 42

7.1.4 ClassMethodConform . 42

7.1.5 EnumConstantConform 43

7.1.6 GeneralizationConform 43

7.1.7 InterfaceConform . 43

7.1.8 UsageConform . 43

7.1.9 Queries . 43

7.2 Sequence Diagram . 44

7.2.1 InteractConform . 44

7.2.2 LineConform . 45

7.2.3 Queries . 45

7.3 State Machine Diagram . 46

7.3.1 CallSequenceStateChartConform 46

7.3.2 StatePattern . 48

7.3.3 SyncStateDiagram . 50

8 Related Work 51

9 Conclusion and Future Work 53

iv

10 Appendix 54

10.1 Class Diagram . 54

10.1.1 AssociationConform . 54

10.1.2 AssociationFieldConform 54

10.1.3 ClassFieldConform . 55

10.1.4 ClassMethodConform . 55

10.1.5 EnumConstantConform 56

10.1.6 GeneralizationConform 57

10.1.7 InterfaceConform . 57

10.1.8 UsageConform . 57

10.1.9 Queries . 58

10.2 Sequence Diagram . 61

10.2.1 InteractConform . 61

10.2.2 LineConform . 63

10.3 State Machine Diagram . 68

10.3.1 CallSequenceStateChartConform 68

10.3.2 StatePattern . 71

10.3.3 SyncStateDiagram . 75

v

List of Figures

1 Class Diagram . 6

2 Initialization and Calculation Sequence 7

3 FieldBu�er Statespace . 7

4 Visualization State Space . 8

5 Field Evolution . 9

6 Alternative Initialization Sequence 10

7 Overview . 19

8 Consistency Rules . 20

9 Navigation Overview . 25

10 ClassFieldConform[nextField] . 30

11 ClassFieldConform[nextField] . 31

12 InteractConform[Initialization] 31

13 Validation Results . 38

14 SOS State Pattern . 48

vi

List of Tables

1 Field Inconsistency . 12

2 Operation Abstract Inconsistency 13

3 Interaction Inconsistency . 14

4 Visualization Inconsistency . 15

5 Visualization Uncertainty . 16

6 Consistency Rules . 28

7 Case Study Projects . 34

vii

1 Introduction

Model-Driven Engineering (MDE) [1] promotes the use of design models as

�rst-class development artifacts to address the inability of third-generation lan-

guages to alleviate the complexity of platforms and to express domain concepts

e�ectively.

However, source code remains to be an important development artifact as

it is the main deliverable of typical development projects and embodies the

executable system. Thus, it is of crucial importance that both, design mod-

els and source code, are consistent and describe the same system. Otherwise,

the executable system deployed to a customer may, for example, provide dif-

ferent functionality than what the customer was expecting based on design

models. Commonly, model-to-code transformations [2] are employed to address

this problem by generating source code automatically from design models. How-

ever, design models do not include all information necessary to generate fully

functional implementations [3]. Moreover, design models typically allow for dif-

ferent implementations. Automatic approaches, however, do apply a �xed set of

rules for translating design models to source code, thus generating one possible

solution without being able of considering speci�c situations.

Thus, the produced solution may be correct but not necessarily intended by

developers (e.g., a translation of an unbounded multiplicity de�ned in UML [4]

may always use a List). Therefore, manual adaptation of generated code is

often inevitable, meaning that inconsistencies between design models and code

could be introduced as for those adaptations usually no further guidance is

provided [5].

The issue of possible inconsistencies between design models and code be-

comes even worse when considering that � especially with the increasing popu-

larity of iterative development processes � both design models and source code

are developed concurrently [5]. This means that both development artifacts

evolve frequently and independently, a situation in which even sophisticated,

automatic consistency-preserving technologies (e.g., [3, 6, 7, 8, 9, 10]) do en-

counter additional serious issues that are hard to solve [3]. For instance, man-

ual changes may be overwritten or � if the synchronization tries to avoid that �

redundancies may be introduced.

Overall, existing approaches that are commonly employed for keeping design

models and source code consistent do not fully address the issue � especially with

frequently evolving artifacts: they typically require additional, manual adapta-

1

tions for which only little support is provided and which may still introduce

inconsistencies.

In this paper, we present a novel approach to address the issue of inconsistent

design models and source code. Model-and-Code Consistency Checking (MCCC)

is an incremental and highly scalable approach that detects inconsistencies be-

tween design models and source code at all times and live during development.

It provides instant, detailed feedback about a project's consistency status and

thus helps developers to not let design models and source code drift apart.

Moreover, can be chained with other approaches (e.g., [11] that use detected

inconsistencies to derive possible adaptations automatically � this work, how-

ever, focuses on inconsistency detection only. In contrast to other approaches

that try to automate artifact synchronization, MCCC fully supports concurrent

evolution of development artifacts and avoids otherwise common issues such as

lost updates or incomplete information.

In order to detect inconsistencies in development projects that use UML

and Java, we developed an initial set of 13 generic consistency rules between

UML design models and Java source code. This set can easily be customized or

extended for other modeling or programming languages and tailored to speci�c

projects or domains. To validate our approach and show its feasibility, we

developed a prototype and conducted a case study in which we applied the

consistency rules to 10 industrial development projects based on UML design

models and Java source code. The results indicate that the approach scales and

detects inconsistencies live during development without interrupting developers.

To summarize the goals of this work:

1. Live consistency checking that handles concurrent evolution of develop-

ment artifacts.

2. Adaptable consistency rules that allow for alternative interpretations and

semantics of artifact (design models or source code) elements.

3. Initial set of generic rules for object-oriented modeling and programming,

that is adaptable and expandable to �t domain and project speci�cs.

2

2 Model-Driven Engineering

France et al. [12] state that a challenge to face in developing complex software

is the wide conceptual gap between the stated problem and its implementation.

Therefore, one of the primarily concerns of MDE is to bridge the gap between the

problem and its software implementation on a speci�c platform and to express

domain speci�cs e�ciently.

A key technology in MDE are transformations from problem-level abstrac-

tions(design models) to source code [1]. Design models describe the system at

multiple levels of abstraction and a variety of perspectives and should shield

developers from underlying implementation platforms.

Domain Speci�c Languages (DSLs) [13], are programming languages to

model a problem-solution, -representation or -domain. Existing technologies

such as the Eclipse Modelling Framework (EMF) [6] use domain-speci�c models

written in a domain-speci�c language, to model the domain speci�cs of a soft-

ware solution and then generate code. Several challenges have to be faced in

order to achieve the MDE vision, which we will discuss in the following.

2.1 MDE Research

According to France et al. [12] the ever growing complexity of software systems

will eventually not only overwhelm developers but as well available implemen-

tation abstractions, resulting in a new problem-implementation gap. Further

rising the abstraction level of software development will become apparent. Such

technologies then will enable even more complex systems, resulting in another

cycle of research on problem-implementation gap, but on a higher level. To

support this growing complexity, MDE research needs to develop technologies

to generate domain-speci�c software development environments. Major chal-

lenges Model-Driven Engineering faces can be grouped in the following cate-

gories ([12]):

• Modeling language challenges. Provide support for creating and using

problem-level abstraction in modeling languages, and for analyzing design

models.

• Separation of concerns challenges. Provide support for multiple, overlap-

ping viewpoints that utilize possibly heterogeneous languages.

3

• Model manipulation and management challenges. Provide support for i)

de�ning, analyzing, and using design model transformations, ii) maintain-

ing traceability links among design model elements for model evolution,

iii) maintaining consistency among viewpoints, iv) tracking versions, and

v) using runtime models.

MDE provides automated support for software engineering and thus can

be considered as evolution of computer-aided software engineering (CASE) [14].

However, MDE broadens the role of design models to an extent that they become

the primary development artifact. Further on, each of the challenges will be

discussed brie�y.

2.2 Modeling Languages

Creation of modeling languages faces two major challenges ([12]):

• Abstraction Creation and manipulation of problem-level abstractions as

�rst-class modeling elements in a language.

• Formality Formalization of a modeling language's semantic to support

formal manipulation.

Formalization tends to restrict modeling languages to provide analysis, trans-

formation and generation techniques. Analyzing design models is important to

secure the quality of those. Not only analysis of design models but as well guid-

ance for developers creating such is required to produce quality design models.

2.3 Separation of Concern

Designing complex software need to balance multiple interdependent, possibly

con�icting, concerns. Developers should be allowed to separate features ad-

dressing those concerns in di�erent viewpoints and analyse their interaction to

identify faulty interactions.

2.4 Model Manipulation and Management

To completely ful�ll the vision of MDE, rigorous transformation-, modeling- and

analysis-techniques are needed. As well a repository-based infrastructure that

support a variety of design model manipulations in a team based environment.

4

Model Transformation Model transformations de�ne relationships among

two sets of models, according to France et al. [12]. One set of models is desig-

nated as source set and the other as target set. Transformation techniques then

transform source models into target models. These transformations can also be

employed to maintain the consistency among the set of models. A change in

one model triggers changes in the other set. Other transformations that will

become more used as MDE matures: i) model composition, the source model

represents di�erent views, the target model then integrates all those views, ii)

model decomposition, a source model can be used to produce multiple target

models, iii) model translation, a source model can be translated into di�erent

target models.

Model Management During the lifetime of a project, design models at vary-

ing levels of abstraction are created, they evolve, are analyzed and are trans-

formed. MDE approaches according to France et al. [12] must have the capa-

bility to store models produced by a variety of tools, monitor and audit model

manipulations and automatically extract information from audits to establish,

updated or remove relationships among models.

Model management should as well audit the consistency among di�erent sets

of models. MCCC addresses the problem of inconsistent development artifacts.

5

3 Running Example

This section introduces the illustrative example used throughout the paper. For

the two development artifacts design model and source code, the most important

details (e.g., classes and methods) are presented.

3.1 Model and Code

«interface»
Field

+ getWidth () : Integer
+ getHeight () : Integer
+ isSet (row : Integer, column :

Integer) : Boolean
+ getNext () : Field

FieldBuffer

+ addField ()
+ removeField ()
+ getSize ()

FieldRenderer

+ render (field : Field)

JGameOfLifeView

- exit : Boolean

+ start ()
+ stop ()
+ addFieldStep ()

FieldFactory

+ initRandomSeed ()
+ createRandom ()
+ createRandom ()

FieldImpl

field[*] : Boolean
+ nextField[*] : Boolean

calcField ()

GameOfLife

+ main ()
+ show ()

ParallelExecutorFieldImpl

- threadsToStart : Integer
- width : Integer

ParallelFieldImpl

- threadsToStart : Integer

field
*

*
- field

«use»

* 0..1

- buffer

«use»

«use»

* 0..1

- view

Figure 1: Class Diagram

To illustrate our work, we chose a small implementation of Conway's Game

of Life (GoL) [15], a simulation of cellular development based on speci�c rules.

It is a non-player game � based on a random generated population, further

generations are computed one at a time. Despite its simplicity, the example

is su�cient to illustrate typical issues regarding model-and-code consistency.

Figure 1 depicts the class diagram overview of the system. The class GameOfLife

contains the main-method in which data structures are initialized and an in�nite

loop, calculating at each step a new generation, is started. This is visualized in

the sequence diagram shown in Fig. 2. Each generation of a GoL population is

calculated from classes implementing the interface Field.

Single thread calculation is realized in FieldImpl. There are two multiple

6

:FieldBuffer:Field:FieldFactory:JGameOfLifeView:GameOfLife

loop

[0,*]

1.3: createRandom

1.1: show

1.3.1: createRandom

1.2: start

1.1: addField
1: addFieldStep

2: getNext

1: main

Figure 2: Initialization and Calculation Sequence

thread implementations: i) ParallelFieldImpl with common thread handling,

and ii) ParallelExecutorFieldImpl with pooled thread handling. Synchro-

nization between the visualisation JGameOfLife and the next generation cal-

culations is done by FieldBuffer. Both addField() and removeField() are

synchronized methods, forcing threads to wait, if the bu�er is either full or

empty, and waking up threads, when a Field is added or removed, respectively.

Buffering «NavLink»
FullWait

«NavLink»
EmptyWait

removeField()

addField()[getSize() == fields.length - 1]

addField()

removeField()[getSize() == 0]

addField[getSize() == fields.length - 1]

addField()

removeField()
removeField()[getSize() == 0]

Figure 3: FieldBu�er Statespace

Figure 3 shows the simple state space of the FieldBuffer. Buffering char-

acterizes the normal queueing of Fields. FullWait and EmptyWait are syn-

chronizing states. One might argue that there are intermediate steps between

Buffering and FullWait, or EmptyWait, respectively, because those states are

only reached if the bu�er is already full or empty. However, those states do not

7

Visualisation
Started

Visualisation
Stopped

stop()

start()

addFieldStep()

Figure 4: Visualization State Space

di�er from Buffering, it still can be considered as bu�ering. Not until another

element is added or removed, the thread is forced to wait. Listing 1 shows the

synchronized methods, assuming that the bu�er is full, a thread would notice

this only if he tries to add another Field. There is also no code line handling

this case. Therefore, neither can be statically veri�ed, runtime information of

the system is needed.

JGameOfLifeView is the visualization class of the system, which displays

each generation, its state space is depicted in Fig. 4. To begin the visualiza-

tion, start() has to be called. New generations to display are added with

the addFieldStep() method. A helper-class FieldRenderer was implemented

to generate a visual representation out of the two-dimensional boolean array.

Finally stop() ends the visualization.

3.2 Evolution

This section discusses typical issues regarding model-and-code evolution in the

context of the provided example. We show how these issues easily cause incon-

sistencies among those development artifacts. First, a source code and a design

model evolution are discussed. Followed by a scenario in which multiple over-

1 public synchronized void addField (f ina l Fie ld f i e l d)
2 throws Inter ruptedExcept ion {
3 while (g e tS i z e () == f i e l d s . l ength − 1) {
4 wait () ;
5 }
6 n o t i f yA l l () ;
7 }
8 public synchronized Fie ld removeField () throws Inter ruptedExcept ion {
9 while (g e tS i z e () == 0) {
10 wait () ;
11 }
12 no t i f yA l l () ;
13 }

Listing 1: Code Snippet FieldBu�er

8

-

��
��� -

��
���

���
���

��:

�
 �	�

�
 �	
«interface»

Field

+ getWidth () : Integer
+ getHeight () : Integer
+ isSet (row : Integer, column :

Integer) : Boolean
+ getNext () : Field

JGameOfLifeView

- exit : Boolean

+ start ()
+ stop ()
+ addFieldStep ()

FieldFactory

+ initRandomSeed ()
+ createRandom ()
+ createRandom ()

FieldImpl

field[*] : Boolean
+ nextField[*] : Boolean

calcField ()

GameOfLife

+ main ()
+ show ()

«use»

«use»

*

0..1

- view

(a) GoL Class Diagram

4model

FieldImpl

Cell

1

*
- nextField

(b) Delta Model

��DD

��DD

e

1 public c lass Fie ldImpl implements Fie ld {
2 protected List<Boolean> f i e l d ;
3 public List<Boolean> nextF ie ld ;
4
5 }

(c) Initial FieldImpl

1 public c lass Fie ldImpl implements Fie ld {
2 protected boolean [] [] f i e l d ;
3 public boolean [] [] nextF ie ld ;
4
5 }

(d) Desired FieldImpl

4code
��DD

��DD

e

Figure 5: Field Evolution

lapping models describe di�erent possible runtime behavior of a single method

in source code.

3.2.1 Field

Consider the multiplicity of the UML::Property nextField in the UML::Class

FieldImpl, as shown in Fig. 5(a), and the corresponding Java::Field as shown

in Fig. 5(c). Obviously, this translation of the multiplicity is valid and there is

no inconsistency.

However, the developer, instead of using the created list of Booleans, wants

to represent the two-dimensional grid of cells in a two-dimensional array of

boolean, as shown in Fig. 5(d). This manual evolution is indicated in Fig. 5 by

4code.

Even though this adaptation does not introduce inconsistencies as the up-

dated source code still re�ects the speci�ed multiplicity in the class diagram,

such manual adaptations could as well introduce inconsistencies (e.g., if the code

was changed to boolean nextField;). Note that model-and-code synchroniza-

tion mechanisms would not detect such an inconsistency, thus propagating the

inconsistency back to the model automatically.

Naturally, changes must not be limited to the code only. In order to better

follow the paradigm of object-oriented modeling, a developer decides to use a

dedicated type Cell to represent individual cells in GoL instead of using boolean

values (Fig. 5(b)). This change is depicted as 4model in Fig. 5. Therefore, the

developer created an inconsistency among design model and source code as the

9

primitive type boolean of Java does not match the complex type Cell.

Note that due to the previous code evolution, an automated synchronization

may easily either override the previous code evolution, or it may generate a

new declaration (i.e., List<Cell> nextField) besides the existing, manually

updated declaration boolean [][] nextField, which is incorrect. Either way,

trying to automatically handle the manually introduced inconsistency may lead

to unintended and potentially still inconsistent results. Thus, another technol-

ogy that checks consistency between design models and source code at all times

is necessary.

3.2.2 Sequence

A common understanding is that a sequence of messages de�ned in a sequence

diagram should be found in code as well [16] � if a message is not re�ected by

a corresponding method call in code, the artifact elements are considered to be

inconsistent.

The initialization sequences of our running example is modeled in two sep-

arate sequence diagrams (Fig. 2 and Fig. 6) that are partially overlapping (i.e.,

they are equal except for the last message).

:GameOfLife :FieldFactory:JGameOfLifeView :Field :FieldBuffer

loop

[0,*]

2: stop

1.3: createRandom

1.1: show

1.3.1: createRandom

1: main

1.1: addField

1.2: start

1: addFieldStep

1: main

1.3: createRandom

1: addFieldStep
1.1: addField

1.3.1: createRandom

1.1: show

1.2: start

2: stop

Figure 6: Alternative Initialization Sequence

However, model-to-code transformation approaches may not be able to suc-

cessfully generate a single coherent method in source code that re�ects both

possible scenarios. Clearly, the missing implementation is an inconsistency that

10

developers are required to �x by implementing the method in the source code

manually. Unfortunately, transformation approaches do not inform developers

about such situations and require them to explore and complete the inconsistent

code without further assistance.

As a consequence, a developer manually produced the implementation shown

in Listing. 2. Notice that the code actually contains an inconsistency. Both

sequence diagrams de�ne that the call start() to JGameOfLiveView is in be-

tween show() and createRandom(). However, in Listing. 2 (line 5) this call is

incorrectly placed after createRandom() and therefore neither of the sequence

diagrams is re�ected in the source code.

This is another situation where the need for model-and-code consistency

checking becomes apparent.

11

3.3 Contained Inconsistencies

We now want to discuss corresponding artifact elements and inconsistencies

among those. For discovered inconsistencies, we also elaborate strategies how

to resolve those. Each inconsistency discussed is brie�y summarized in a ta-

ble, that is organized as follows: the top line shows the name of the intended

consistency rule (left) and the context (i.e., the speci�c element) for that it is

evaluated (right). In the middle, the design model and source code elements (or

parts thereof) that cause the inconsistency are shown. The bottom of the table

summarizes the inconsistency and gives a strategy to resolve it.

3.3.1 Field

Consider the visibility modi�er of the UML::Property field in the UML::Class

FieldImpl and the corresponding Java::Field (both shown in Table 1). Ob-

viously the modi�ers of the corresponding artifact elements does not match, the

modeled property is private, however the implemented �eld is public.

ClassFieldConform

Property field in UML::Class

FieldImpl in Fig. 1

1 private boolean [] []
2 f i e l d ;

Source of Inconsistency How to �x it?
Although the UML::Property is
private, the Java::Field in-
stead is public.

Change the modi�er of the
UML::Property to public or the
Java::Field to private.

Table 1: Field Inconsistency

12

3.3.2 Method

Methods provide the public interface of a type (e.g., UML::Class, Java::Class,

UML::Interface, ...) and should be found in a correct translation in source

code. For instance, compared to the other UML::Operations of Field, isSet

is not set to abstract as one can see in the middle line in Table 2 on the left

side. The matching Java::Method is as well set to abstract, Table 2 on the

right side. The developer most likely forgot to set the UML::Operation abstract.

Arguably interface-methods are already abstract, but since the methods were

deliberately set abstract, the UML::Operation isSet should also exhibit the

modi�er. We discussed this inconsistency in the context of operations being

abstract or not, it could also result from any other modi�er.

ClassMethodConform

«interface»
Field

+ getWidth () : Integer
+ getHeight () : Integer
+ isSet (row : Integer, column :

Integer) : Boolean
+ getNext () : Field

1 public abstract

2 boolean i s S e t (. . .) ;

Source of Inconsistency How to �x it?
Although the Java::Method
isSet is abstract the
UML::Operation does not
exhibit the abstract modi�er.

Set the UML::Operation ab-
stract.

Table 2: Operation Abstract Inconsistency

1 public stat ic void main (St r ing [] a rgs) {
2 f ina l GameOfLife go l = new GameOfLife () ;
3 go l . show () ;
4 F i e ld f i e l d = Fie ldFactory . createRandom (800 ,600 ,0 . 2 f) ;
5 go l . view . s t a r t () ;
6 for (; ;) {
7 try {
8 go l . view . addFie ldStep (f i e l d) ;
9 } catch (Inter ruptedExcept ion e) {
10 go l . view . stop () ;
11 }
12 f i e l d = f i e l d . getNext () ;
13 }
14 }

Listing 2: Initialization Sequence

13

3.3.3 Sequence

This section summarizes the previously mentioned example (Section 3.2.2) in

Table 3. Figure 2 shows the initialization sequence of our running example,

whereas Listing 2 shows the corresponding implementation. In Fig. 2, a call

to start the visualization start() follows after a show()-call to GameOfLife.

However, in Listing 2 the call start() is performed after a random �eld is

created, as it would be required by Fig. 2 (line 5 of Listing 2). Therefore, there

is a inconsistency between design model and source code.

InteractConform

Message start in Fig. 2. Line 5 in Listing 2.

Source of Inconsistency How to �x it?
The call to start in the visual-
ization is misplaced.

Move the call between show and
createRandom.

Table 3: Interaction Inconsistency

14

3.3.4 Statechart

Transitions in a state machine diagram can be messages or calls to an Object.

A sequence of possible transitions from state to state then de�nes also allowed

sequences of calls to its corresponding implementation. If after a sequence of

calls a �nal or the beginning state, respectively, is not reached it has to be

considered as inconsistent. An example of such an inconsistency is summarized

in Table 4. The state space of the visualization is depicted in Fig. 4. Considering

the state space of the system, the state VisualizationStarted is reached, even

though line 5 is wrongly placed. However, the stop()-call, which would lead to

the beginning state, is in a catch-block, therefore it is only reached in a failure

case. If now a developer adds another stop()-call after line 13, a non-failure

control �ow would be consistent with the state chart in Fig. 4, as the beginning

state is reached. Nevertheless, the call is directly after an in�nite loop and will

not be reached.

CallSequence-

StatechartConform

Fig. 4. Listing 2.

Source of Inconsistency How to �x it?
The call to end the visualization
after the loop ending in line 13
in Listing 2 is missing.

The call needs to be added after
line 13 in Listing 2. However,
in order to be reached, the loop
has to be changed.

Table 4: Visualization Inconsistency

15

3.3.5 Statechart Uncertainty

Calls to an Object alter its state, however, these messages can be arbitrarily

nested in sub-calls, loops or if-expressions. These possibilities introduce a source

of possible uncertainty if the modeled behavior is re�ected correctly in the imple-

mented runtime behavior. Such an example is summarized in Table 5. Listing 3

shows an alteration of the already known initialization sequence for GoL. The

call to start the visualization (line 6 is now intended in an if-expression. With-

out runtime information of the system, one can not be absolutely sure that this

call is actually executed. However, the call exists and might be executed, this

can be attributed as uncertainty in reasoning about a sequence of calls.

1 public stat ic void main (St r ing [] a rgs) throws Inter ruptedExcept ion {

2 f ina l GameOfLife go l = new GameOfLife () ;

3 go l . show () ;

4 JGameOfLifeView view = go l . view ;

5 i f (view != null) {

6 view . s t a r t () ;

7 }

8 F i e ld f i e l d = Fie ldFactory . createRandom (800 , 600 , 0 .2 f) ;

9 for (int i = 0 ; i < 10 ; i++) {

10 view . addFie ldStep (f i e l d) ;

11 f i e l d = f i e l d . getNext () ;

12 }

13 view . stop () ;

14 }

Listing 3: Alternative Initialization Sequence

CallSequence-
StatechartConform

Figure 4. Listing 3

Source of Uncertainty How to �x it?
The call to start (Listing 3
line 6) the visualisation is in an
if-expression.

...

Table 5: Visualization Uncertainty

16

4 Principles of Model-and-Code-Consistency

Checking

Model-and-Code Consistency Checking (MCCC) addresses the issue of incon-

sistent development artifacts by continuously evaluating a project's consistency

status. It thus guides developers through the software development cycle with

constant and immediate feedback on inconsistencies between artifacts. In doing

so, it e�ectively helps developers to take measures to not let design models and

source code drift apart.

4.1 Explicit Consistency Rule

Let us illustrate how developers may want to intuitively express the condi-

tions that are required to hold for artifacts in order to be consistent. List-

ing 4 shows a stylized informal example of an explicit consistency rule between

UML::Propertys and Java::Fields:

1 UML: : Property x

2 x . name = x . j avaF i e ld . name &&

3 x . v i s i b i l i t y = x . j avaF i e ld . v i s i b i l i t y &&

4 i f x . c a r d i n a l i t y=∗ then

5 x . j avaF i e ld i s a c o l l e c t i o n or an array

Listing 4: Stylized Consistency Rule

First, both the UML::Property and its corresponding Java::Field must

exhibit the same name (line 2). In order to compare those, at �rst a devel-

oper has to navigate to the corresponding Java::Field, using the javaField-

property. Second, the visibility of both need to be compared (line 3). Finally,

the multiplicity of the UML::Property can map to di�erent manifestations of a

multiplicity in Java (lines 4-5).

4.1.1 Consistency Rules Prevent Drift

As we have discussed above, development artifacts do evolve frequently for var-

ious reasons. Consistency rules evaluate continuously whether speci�c aspects

of those artifacts are consistent (i.e., one artifact does not violate or contra-

dict information that is speci�ed in the other artifact). Therefore, they detect

immediately if an evolution of either artifact causes (or also removes) such a

violation or contradiction.

17

4.1.2 Consistency Rules Promote Convergence

In practice, design models often precede the production of source code and de-

velopers rely on model-to-code transformations. However, as we have discussed

in Section 3.2.2, the result may be a skeleton implementation which could be

mostly inconsistent due to missing method bodies. In this situation, it is cru-

cial that developers are informed about all inconsistencies and that they are

provided with guidance that helps them converging the artifacts � eventually

reaching a consistent state.

Recall the discussion of Section 3.2.2 in which two di�erent initialization

sequences (Fig. 2 and Fig. 6) are to be combined into a single piece of source code

that could not be generated. Consistency rules can evaluate for each sequence

diagram individually whether it is re�ected in the source code. For example, a

consistency rule can validate for each incoming call to a UML::Lifeline whether

the following outgoing calls are performed in the right order in the corresponding

Java::Method, ignoring method calls that are not modeled in the speci�c lifeline

(or sequence diagram). For both Fig. 2 and Fig. 6, for instance, this rule would

search for di�erent sequences of method calls performed in the method main

of GameOfLife � it would check whether the respective call-sequences in the

sequence diagrams are sub-sequences of the statements in main. With an empty

skeleton implementation, the consistency information provided by the rule would

assist developers to stepwise add missing statements and remove inconsistencies.

During this process, consistency information from other rules also ensures that

those adaptations do not accidentally introduce new inconsistencies.

4.1.3 Challenges

In order to write consistency rules like the one shown in Listing 4, di�erent

challenges have to be faced. These are namely: i) design models and source

code are not integrated in a single cohesive language � which means a single

consistency rule cannot access elements of both, ii) design models and source

code do not allow inter-model navigation � which requires tedious navigation,

iii) design models and source code editing generates di�erent 4 for each artifact

� which requires artifact speci�c change handling.

18

4.2 Framework

The MCCC approach integrates artifacts of di�erent sources and provides nav-

igation links that allow for simple writing of explicitly stated consistency rules

and their e�cient evaluation � also after artifact evolution � by an incremental

consistency checker. An overview of the approach is given in Fig. 7. Before

we discuss a set of consistency rules that check consistency of design models

and object-oriented code, and their application, in Section 5, we �rst present

the domain-independent aspects of the approach in this section. However, we

will begin with formalizing consistency rules. An overview of the approach is

given in Fig. 7, several entities are shown: i) the Source artifact is any unit

of code in plaintext (e.g., Java-class, C#-�le), ii) the Code, an internal ab-

stract representation of the Source, iii) the Model, this is as well an internal

abstract representation of a model (e.g., UML), iv) the Integration Layer,

unifying access to both Model and Code, and v) the Consistency Checker

evaluates the explicit Consistency Rules after every model change. Before we

discuss a set of consistency rules that check consistency of design models and

object-oriented code, and their application, in Section 5, we �rst present the

domain-independent aspects of the approach in this section. However, we will

begin with formalizing consistency rules.

CC

?

Integration Layer

?�
 �	Model
?�
 �	Code

6
Source��DD

��DD

e
���

��DD

��DD

e
-

� j�4model

�
4model

I4mod
artifact

I4code

I
4code

Designer Developer

parsed

uses

accessaccess

navigate

Consistency Rules

Figure 7: Overview

4.3 Rule Elements

To express consistency among development artifacts, our approach relies on

explicit consistency rules. These rules are adaptable at all times and thus allows

for any semantics required � imposed by project, company or domain speci�cs.

Consistency rules, as de�ned in [17] and shown in Eq. 1, are boolean conditions,

or invariants, that a developer wants to hold among development artifacts Such

19

B
B

�
�Consistency Rule -

-

BB�� Instance

�
�

�
� Modeling Language

6�
 �	Model

����Programming Language

6�
 �	Code-

-

-
- Context

- Condition
PPi

6

- Scope

- Context Element

∈ of either

∈s of either

conforms to

conforms to

in
s
t
a
n
c
e
o
f

in
s
t
a
n
c
e
o
f

d
e
r
iv
e
d

Integration Layer

Figure 8: Consistency Rules

rules are typically formulated for speci�c types of artifact elements.

Consistency Rule =

<Condition, ContextElement>→ Bool

where ContextElement ∈ MetaModelElements

(1)

Figure 8 intends to give an overview of the concept of an explicit consistency

rule.

A consistency rule consists of two parts: Context and Condition. The Con-

text is an artifact element speci�ed in either a Modeling Language or Program-

ming Language and determines on which artifact elements the rule should be

evaluated. Each individual evaluation is then an instantiation of the rule. The

Condition is written from the viewpoint of the Context and speci�es the invari-

ant that should hold.

On the bottom of Fig. 8 an Instance � a formal de�nition was given in [17]

and it is shown in Eq. 3 � of a consistency rule is shown, it as well consists of two

parts: Context-Element and Scope. The Context-Element is an instance of its

corresponding Context for which the rule is actually evaluated. The Scope [18],

formally de�ned in [17] and shown in Eq. 2, is a set of elements that are accessed

when evaluating the Condition on the speci�c Context-Element.

Scope(Instance) =

Set of <ModelElement, Field>pairs

accessed during Evaluation of CRI.

(2)

20

Instance = <ConsistencyRule, Model Element>, where

ModelElement instance of ContextElement

ConsistencyRule.

(3)

Both Consistency Rule and Instance are oblivious to the fact that di�er-

ent development artifacts exists, this is visualized by the straight vertical line

in Fig. 8.

Noticing that statecharts as design elements had a speci�c challenge to

consistency rules, the de�nition was slightly altered, to allow expressing

uncertainty as shown in Eq. 4.

Consistency Rule =

<Condition, ContextElement>→ Bool, Float

where ContextElement ∈ MetaModelElements

(4)

In static analysis one can not be absolutely sure that certain runtime speci�cs

are actually executed the way they are expressed in the model. Consider a

message that leads to the next state in a statechart. However, its corresponding

call in the implementation is contained in an if-expression. Without runtime

information it is impossible to be certain, that this call is actually executed.

This property is attributed as an uncertainty factor, in Eq. 4 consistency rules

therefore can also return values of type �oat(=uncertainty). A value of 0.0

is considered as completely inconsistent, 1.0 express complete consistency, any

value in between expresses an uncertain result.

4.4 Artifact Integration

Both, design models and source code are typical development artifacts in MDE.

For detecting inconsistencies between the design model and source code, those

artifacts must be integrated in a manner that a consistency checker can access

them in a uni�ed way.

4.4.1 Metamodel

Unfortunately, artifacts are typically instances of di�erent metamodels and of

di�erent development tools. For example, an UML model element is an instance

of an UML metamodel element and typically edited in an UML modeling tool.

21

In turn, Java code needs to conform to the Java language speci�cation and

typically edited in a Java programming tool.

Moreover, retrieving information from design models di�ers signi�cantly

from accessing source code. Although both artifacts are typically stored in

plain text �les, modeling tools do use a in-memory representation (e.g., [19, 20]),

whereas programming tools often work with plain text �les only (e.g., [21, 22]).

Text �les are as well not necessarily saved continuously during editing and since

the consistency checker requires continuous access to both design model and

source code (as well instant access to changes). We opted to provide an uni-

form, in-memory access to both. Following, we refer to Code and Model as the

in-memory representation of source code and design model, respectively � see

bottom of Fig. 7. Both are accessible via the Integration Layer.

However, although both design model and source code are now commonly

accessible through a standard infrastructure, each artifact still conforms to its

respective metamodel. Therefore, it is still not possible without additional inte-

gration to link Model elements to Code elements or support explicit consistency

rules that govern both. This integration is handled by the Integration Layer,

that provides a single coherent metamodel for both Model and Code to the con-

sistency checker (i.e., the consistency checker works with a single metamodel

that contains the metaclasses of both artifacts) in Fig. 7. This enable the use

of standard consistency checkers that typically work with a single metamodel

(e.g., [23, 24, 25]). Additionally, the uni�ed metamodels provides the possibility

of using Navigation Links between artifact elements (e.g., to allow a speci�c

UML::Class to be linked to a speci�c Java::Class). Next, we discuss the ben-

e�ts of such direct navigation between artifact elements and how it is handled

by the integration layer.

4.4.2 Navigation

Even with a uni�ed view on Model and Code, both remain independent artifacts

and elements of both are typically not linked explicitly. As such, it is hard to

know which Model and Code elements to match. Revisiting the consistency rule

discussed in Section 4.1, note how the functions javaClass and javaField are

used to navigate between Model and Code elements. Indeed, this is convenient

for writing explicit consistency rules, but how can those methods return Code

elements for given Model elements? The solution are explicit navigation links

that establish bidirectional relations between Model and Code elements. Note

22

that although a developer may have clear relations in mind (e.g., a UML::Class

and a Java::Class with equal names), such explicit links must be present

in order to enable convenient navigation. The alternative would be tedious

navigation from an arti�cial root element of a Model- or Source-element to the

�corresponding� element having the correct name. Note that such a search-

based navigation would require consistency rules to not only be more complex

to write, but also to be more complex to evaluate by a consistency checker.

By using shortcuts in navigation through Navigation Links, scope sizes are

reduced as well.

For example, consider that a developer wants to compare all UML::Propertys

(#n) against all Java::Fields (#m) of a Model and Code class pair. Then, n*m

evaluations will be done at each change, leading to higher execution times as

the scope size is large. The consistency rules we implemented are written on a

speci�c context to compare, for example, one instance of UML::Property against

all Java::Fields of a corresponding UML::Class and Java::Class-pair. This

favours execution times, instead of n*m evaluations only m evaluations have to

be done. However, for all UML::Propertys in a UML::Class still n*m evaluations

have to be done, at least at the beginning. If now a speci�c UML::Property

is changed, this requires only requires 1 re-evaluation. If a Java::Field is

changed, it requires the re-evaluation of all instances, which scope contains the

�eld. If, however, a Java::Field is added, it still requires n re-evaluations and

n*m checks in total.

The scope size is of great importance as artifacts evolve frequently and each

evolution requires consistency rule instances to be re-evaluated. Having to tra-

verse complex data structures for each re-evaluation could impose a signi�cant

performance threat. Therefore, the Integration Layer augments the respec-

tive metamodel of the artifact with additional functionality for direct and bidi-

rectonal navigation between model and code.

Those Navigation Links can either be implicit based on an inherent prop-

erty of an Model or Code element as mentioned above, or explicitly stated in

corresponding elements. Given explicit consistency rules, artifact integration,

and navigation among Model and Code, we now discuss how evolving artifacts

can be checked for consistency e�ciently.

23

4.5 Incremental Consistency Checking

Both, Model and Code, do evolve over time for various reasons (e.g., because

of iterative development processes). MCCC therefore promotes the use of an

incremental consistency checker that handles changes e�ciently and provides

immediate feedback.

Recall Fig. 7, it as well shows the process of incremental consistency check-

ing: The left hand side depicts the process of changes in the Model4model, those

are instantly sent to the checker. The situation is di�erent for Code, incremen-

tally update of the internal representation had to be emulated. If a developer

edits a Source-element, this new version is compared with the in-memory Code

version, resulting in a 4mod.artifact. With this information the in-memory ele-

ment is updated. This subsequently leads to the generation of 4code, initiating

the re-evaluation of the scope. Note that the use of atomic changes and incre-

mental re-evaluation of consistency rule instances reduces the e�ort for keeping

consistency information up-to-date signi�cantly when development artifacts are

manipulated frequently. Moreover, the order in which change information is

passed to the consistency checker does not a�ect consistency results. Thus, si-

multaneous updates of both artifacts do not lead to race conditions. Next, we

demonstrate the application of our approach to the motivational example from

Section 3.

24

5 UML/Java Application

Let us now present in detail how MCCC is applied to our running example. In

this section, we �rst show how the metamodels of UML and Java are integrated

and how navigation is realized. Then, we present a set of consistency rules that

is suitable for object-oriented modeling and programming and discuss possible

alternative semantics. Finally, we illustrate how our approach helps developers

to identify and correct inconsistencies between development artifact elements.

5.1 Metamodels and Navigation

Two possibilities exist to integrate the development artifacts metamodels: i)

merge Model- and Code-metamodel into one comprehensive model and add

to this metamodel the inter-model navigation properties, ii) there exists a

third metamodel which imports Model- and Code-metamodel and in which

Navigation Links are de�ned. The second option has the advantage that

tools for modeling and coding can still use their own metamodels, whereas

with the �rst option either tool would have to use the new metamodel, or the

elements need to be translated. Therefore, we decided to use the second ap-

proach. Navigation Links are then de�ned in the third metamodel and each

Navigation Link object contains a reference to a UML- and an Java-element.

Figure 9 depicts the solution.

The Navigation Link-Rectangle is the Object storing the references to UML

UML Java

Navigation Link


```

``̀

(uml::Class).javaclass

(java::Class).umlclass

Figure 9: Navigation Overview

and Java, depicted as solid lines between Navigation Link and UML or Java,

respectively. The dashed line, on the other hand, is the ideal world view the

tool emulates, opposites of Model or Code elements are directly accessed, with

no visible intermediate link.

One might argue that Objects storing those Navigation Links are not

necessary. This is true if links are achieved by a simple heuristics (e.g., if a

UML::CLass and a Java:Class have the same name, then they are considered

opposites of each other). However, each access of a Navigation Link-reference

would result in a search in the complete Model or Code for an element ful�ll-

25



ing the heuristics. Considering that by evaluating a consistency rule a link �

possibly the same � needs to be evaluated multiple times, which would lead to

unnecessary computational overhead.

Navigation among metamodels, and therefore between Model and Code ele-

ments, should follow standard navigation patterns. Thus, we chose to provide

additional references that are added to artifact elements. If no corresponding

element is speci�ed, the reference returns null.

As outlined above, there exists a metamodel specifying possible links. From

this metamodel possible navigation references for each metamodel are computed.

Take the example of Fig. 9, suppose the UML-reference (in the Navigation

Link-Object) is of type UML::Class, with name umlclass and the Java of

Java::Class, with the name javaclass. Then, for UML::Class a reference

called javaclass will be provided and accepted by the consistency checker.

This reference does not really exist in the respective metamodel de�nition of

UML::Class, but since the Integration Layer abstracts Model and Code ac-

cesses from the consistency checker it will be nevertheless accepted. At inter-

pretation time of a rule instance, navigation references are instead handled by

a NavigationHandler, which manages the Navigation Links.

5.1.1 Implicit Navigation Links

Simple heuristics can be used to introduce Navigation Links, but instead of

applying those at every access, MCCC provides a one time computation of all

possible match-ups, which are then stored. As previously mentioned, a simple,

yet often practical heuristic could consider a UML::Class and a Java:Class to

be opposites if they have the same name. This simple name heuristics (Listing 5)

will often be su�cient for typical UML/Java projects, of course any heuristics

can be used, to meet project speci�c needs.

1 for UML: : C l a s s i f i e r u : Design Model
2 for Java : : C l a s s i f i e r j : Source Code
3 i f u . type matches j . type // Inter face , Enumeration , Class
4 && u . name == j . name then
5 generate Navigat ion Link

Listing 5: Simple Name Heuristics

26



1 package shapes ;
2 /∗ @NavLink( id="shapes . Rectangle ") ∗/
3 public c lass Rectangle {
4 //@NavLink( id="shapes . Rectangle . getXCoord")
5 public double getXCoord ( ){
6 // . . .
7 }
8 }//Rectangle

Listing 6: Navigation Link Examples

5.1.2 Explicit Navigation Links

Storing the Navigation Links also opens up the possibility to set explicit links

in Model and Code. This possibility was introduced for situations were a devel-

oper does not want to evaluate the whole project or introduce connections that

are not obvious to an algorithm. A match of two entities is achieved based on

a String-id. If two id's of an Model and Code element are the same one can

navigate among those. For Java we experimented with the possibility to let the

developer introduce an annotation type, called NavLink. This had obvious dis-

advantages, since this type had to be accessed from every point in the code, and

might violate architectural rules. Moreover, Java annotations can not be applied

to statements, which would limit the scope of Navigation Links. Therefore,

links were put into comments, but the syntax was kept, to distinguish it from

normal ones.

Listing 6 illustrates possible examples of explicit Navigation Links, those

are fully quali�ed to prevent ambiguities. However, it can be any string and

any type of comment (as one can see in the Listing).

For explicit links in UML a pro�le is generated, containing a set of stereo-

types used to set explicit Navigation Links. Pro�les in UML allow providing

stereotypes for speci�c types, allowing thatNavigation Links are only pro-

vided for types for which in the third metamodel a possible Navigation Link

to another model is de�ned. Such a generated stereotype also has an id-�eld,

generating the possible match with its (Java-)code opposite.

5.2 Explicit Consistency Rules

An initial set of consistency rules was de�ned to explore capabilities of MCCC,

an overview of those can be seen in Table 6. We developed consistency rules

for the following three types of UML diagrams: i) class diagrams, ii) sequence

diagrams, and iii) state machine diagrams.

27



ID Name Context Description

CR1 AssociationConform uml::Association Each memberEnd of an association
has a corresponding �eld in code.

CR2 AssociationFieldConform uml::Association Variation of AssociationConform.
Association has direct navigation
link to code.

CR3 ClassFieldConform uml::Property A �eld with the same name, type
and modi�ers as in UML exists.

CR4 ClassMethodConform uml::Operation Every UML::Operation has a corre-
sponding Java::Method.

CR5 EnumConstantConform uml::EnumerationLiteral An Java::EnumConstant exists that
has the same name and at least one
value equal to the ones speci�ed in
UML.

CR6 UsageConform uml::Usage In the using element, there exists a
variable, parameter or return type
of the used element.

CR7 GeneralizationConform uml::Class A Java::Class inherits the same
classes as its corresponding
UML::Class.

CR8 InterfaceConform uml::Class The same interfaces are imple-
mented for both Model and Code

CR9 InteractConform uml::Interaction A speci�ed sequence of messages in
a sequence diagram must be found
in Code.

CR10 LineConform uml::Lifeline Incoming messages must exist and
have the same outgoing calls.

CR11 StatePattern uml::State A veri�cation of the state pattern
from Gamme et al. [26].

CR12 SyncStateDiagram uml::StateMachine Correct implementation of a syn-
chronized data structure.

CR13 CallSequenceStatechartConform uml::StateMachine Is a sequence of calls to a class al-
lowed from its state machine.

Table 6: Consistency Rules

Class diagrams describe the static structure of a software system. As-

sociationConform evaluates if an association among two Model elements is

also to be found in Code. A variation is AssociationFieldConform, in-

stead of using Navigation Links on class level, this rule uses links from

an UML::Association directly to the corresponding Java::Field(s). All

UML::Propertys of an UML::Class should have a corresponding implemen-

tation element (with the same name, type, multiplicity), ClassFieldConform

tries to detect inconsistencies. ClassMethodConform does the same but for

UML::Operations.

An enumeration de�ned in UML should have a corresponding Java::Enum

with the same enumerators. Since UML::EnumerationLiterals are only capable

of representing one value, the enumerator should be found in the list of possi-

28



ble values of a corresponding Java::EnumConstant. An UML::Usage can be

interpreted as follows, in the using type should exist a �eld, parameter, return

type or a local variable of the used type. UsageConform tries to �nd one of

those examples given. InterfaceConform and GeneralizationConform evaluate

if a pair of Model and Code elements implement (or inherit) the same types.

Sequence diagrams describe the communication among certain design

model elements. InteractConform evaluates if a sequence of messages and con-

trol structures can be found in a Code element, context is a UML::Interaction.

LineConform does similar but only in the context of a UML::Lifeline, incom-

ing calls must be found as methods in a Java::Class and in this method all

outgoing calls must be contained in the correct order. For both rules holds,

in between UML calls can be arbitrarily many Java statements. However, this

semantics can easily be tightened, to not allow in between Java statements so

that it becomes �exactly this sequence and nothing less or more�.

State machine diagrams describe runtime behavior of a system or cer-

tain artifact elements. StatePattern evaluates if a state pattern [26] is correctly

implemented. SyncStateDiagram is in the context of synchronized data bu�ers

and evaluates correct thread handling. State machines can be used to model the

correct usage of a certain Object (e.g., File: open(){read()}close()). CallSe-

quenceStateChartConform evaluates if a sequence of calls to e.g., a File-Object

comply to a state machine. Other UML diagrams, such as component-, object-,

deployment-diagrams provide a view of the modeled system that is not acces-

sible from the source code artifact alone. However, although this set of rules

evaluates important concepts of consistency among Model and Code it still is

an initial set that can be extended and customized to match the needs of a

developer or a speci�c project. To de�ne those consistency rules, we use the

Object Constraint Language (OCL) [27], which is one of the most common con-

straint languages and typically used to write invariants that must hold within a

single UML model. To discuss changes to the metamodels of the respective ar-

tifacts and to the constraint language an actual constraint, ClassFieldConform

(as shown in Listing 7), will be discussed.

Note from the consistency rule in Listing 7 that the constraint language

remains unmodi�ed, only references supporting the navigation had been added

to either metamodel. For instance, consider the javaclass - reference in line 3 of

Listing 7, in this case the speci�ed (java-)opposite of the UML::Class is returned.

The prosa de�nition of the given constraint is as follows: Select all Java::Fields

from the speci�ed opposite Java::Class. In this set (if not empty) should

29



BB��ClassFieldConform
-

-

����MM Model

6

PPA

����MM Code

6
 

  
HY --

-

-
- UML::Property

- Listing 7





JJ]
6

-

- nextField

BB��
ClassFieldConform

[nextField]

self.type,...}
{nextField[Java::Field].type,...

∈ of either

∈s of either conforms to

conforms to

in
s
t
a
n
c
e
o
f

in
s
t
a
n
c
e
o
f

d
e
r
iv
e
d

Integration Layer

Figure 10: ClassFieldConform[nextField]

exist a javaField with the same name and correct translation of multiplicity .

Subsequent aspects of consistency, such as the same visibility modi�ers (public,

private,..), type conformity and �nally static and abstract are not depicted

for space reasons.

5.3 Incremental Evaluation

Following, we show how MCCC is aware of changes of either Model or Code, in

order to re-evaluate consistency rule instances, holding the changed elements.

Following, we discuss how such changes are handled e�ciently in our approach,

starting with a design model adaptation, followed by a source code adaptation.

5.3.1 Model Evaluation

Recall the example in Section 3.2.1 the type of the Model element

nextField[UML::Property] was changed to Cell. The consistency checker

should, after performing the change, evaluate the rule instance and show its

1 [ Context : uml : : Property ]
2 l e t f i e l d s : Set (members : : F i e ld ) =
3 s e l f . c l a s s . j a v a c l a s s . g e tF i e l d s ( ) in
4 i f not ( f i e l d s −>isEmpty ( ) ) then

5 f i e l d s −>s e l e c t ( j avaF i e ld |
6 j avaF i e ld . name = s e l f . name
7 and

8 s e l f . upperValue = −1 implies

9 ( f i e l d . arrayDimension > 0 or

10 javaF i e ld . type
11 . oclAsType ( Java : : TypeReference ) . t a r g e t
12 . oclIsTypeOf ( java . lang . Collection ) )
13 or . . .
14 s t a t i c , v i s i b i l i t y , ab s t r a c t . . .
15 ) else f a l s e endif

Listing 7: ClassFieldConform

30



inconsistency. In Fig. 7 the developer directly edits a Model element, in this

case the type of nextField is set to Cell. Figure 10 shows the current instan-

tiation of this particular consistency rule. The 4model for the Model is speci�ed

by nextField of type UML::Property and its property type, which is set from

Boolean to Cell. Given to the consistency checker, if the changed property is

in the scope of ClassFieldConform[nextField], a re-evaluation of this consis-

tency rule instance is triggered. Figure 11 now also states the inconsistency of

the pair, this correctness feedback is already output from the MCCC tool.

Figure 11: ClassFieldConform[nextField]

5.3.2 Code Evaluation

The process for Code is similar, but has one additional stage. A developer does

not directly change the code model in-memory; at each change of an edited

Source-element the corresponding model representation has to be updated. Re-

call the discussion in Section 3.2.2 about sequence diagrams. The Fig. 2 and

the Listing 2 actually are inconsistent. The call to JGameOfLifeView starting

the visualization was misplaced (line 5). It should instead be placed (according

to the sequence diagram Fig.2) between show() and createRandom(). If a de-

veloper now re-positions this call, parsing the edited element and subsequently

comparison with the in-memory version is triggered, resulting in (4mod.artifact).

Based on the compare information, the method is updated and the call is copied

at the corresponding place in the method. This update changes the statements

of the method main, 4code is then speci�ed with type Java::ClassMethod,

and property statements. This change is now forwarded to the consistency

checker, which a re-evaluates all consistency rule instances which scope con-

tains statements of the given Java::ClassMethod. Now Figure 12 states the

consistency of both elements.

Figure 12: InteractConform[Initialization]

31



6 Validation

To demonstrate both feasibility and scalability of MCCC, we developed a pro-

totype implementation that was used to conduct a case study on 10 mostly

industrial projects. Moreover, in this section we also discuss the general appli-

cability and possible limitations of our approach. We start with a description

of the prototype.

6.1 Tool

Our MCCC approach was implemented as a set of plug-ins for the IBM Rational

Software Architect (IBM RSA) [19]. Therefore, our prototype provides a single

solution to modelling, implementation, and feedback about consistency � it is

available at [28]. EMF Core (Ecore) has been chosen as common metamodel in

that Model and Code are represented. This allows that elements of either artifact

can be treated equally and the possibility to import metamodels enables data

integration.

Incremental Consistency Checker. As incremental consistency checker,

the Model/Analyzer [23] is employed. Speci�cally, an EMF-based version that

allows for consistency checking of arbitrary EMF models was used.

Metamodels and Navigation. EMF is basically a standard to imple-

ment DSL's [29, 30], because of that reason it was used to express the model

representation of the design model and source code. To generate an Ecore rep-

resentation of Java source code, the Java Model Parser and Printer (JaMoPP)

[31] was used.

Programming Language Support. MCCC technically supports any pro-

gramming language for that an Ecore representation can be obtained. Prac-

tically, this means that a full metamodel (/language speci�cation) of the pro-

gramming language needs to be speci�ed in ECore. EMF then uses the ANTLR

language recognition tool to generate a text parser. Given this, the ECore-�le,

containing the currently speci�ed Navigation Links, needs to be updated to

introduce new explicit links. Furthermore, a handler class must be implemented

to search for explicit links. Next, we discuss the case study we performed using

the prototype implementation.

32



6.2 Case Study: UML and Java

Since MCCC is expected to be applied in large-scale software development envi-

ronments with industrial-size models and large code bases, both computational

scalability (i.e., the time it takes to (re-)evaluate consistency after changes)

and memory consumption (i.e., the space in memory required by Navigation

Links, Ecore code model, and the consistency checking mechanism itself) are

critical factors for its practical value. To asses our approach in those factors,

we performed a case study on projects of di�erent sizes and domains. UML was

chosen as modelling language as it is basically an industry standard for object

oriented modelling. As programming language Java, which is mostly ranked in

the top 5 of TIOBE's community ranking [32].

6.2.1 Projects

For the case study, we used 10 mostly industrial projects, an overview

is given in Table 7.1 #Instance speci�es the number of design rule in-

stantiations, #Model Elements (UML::Class, UML::Association, etc.) and

#Code Elements (Java::Class, UML::Field, etc.) the size of Model and Code,

respectively. All 13 rules from Table 6 were applied to each project. For projects

with missing model, the design was reverse engineered from the source code. The

projects span a wide range of sizes, from small single-developer to large multi-

developer projects. GameOfLife is the project presented in this paper and the

smallest in the test set with 286 Model elements and 261 Code elements. The

biggest project in the test set is the ArgoUML tool [20], with 6,039 Model elements

and 19,557 Code elements.

ArgoUML ArgoUML is an UML diagram editor written in Java, it is released

under the open source Eclipse Public License [33]. It does not yet support the

complete UML speci�cation. The tool started as Ph.D. thesis by Jason E.

Robbins at UC Irvine but then became an open source project.

The extracted diagram is a class diagram, showing all the used entities and

their relations.

ATMExample ATMExample is a simulation of an automated teller machine.

Hardware of the ATM is simulated, GUI elements and transactions to and from

1A detailed description of each project can be found at [28].

33



Project Name C
la
ss

S
eq
u
en
ce

S
ta
te
ch
a
rt

#
M
o
d
el

E
le
-

m
en
ts

#
C
o
d
e

E
le
-

m
en
ts

#
In
st
a
n
ce
s

PR01 GameOfLife x x x 286 261 83
PR02 TestService x x x 397 302 157
PR03 Checkers x x 425 342 95
PR04 ATMExample x x 1,341 1,550 601
PR05 SMTSolver x x 1,254 2,021 400
PR06* TaxiSystem x x 1,930 3,488 608
PR07 ObstacleRace x x 1,992 3,555 886
PR08 VOD3 x x 2,538 3,613 857
PR09 biter x 2,648 4,015 1,244
PR10* ArgoUML x 6,039 19,557 2,005

* Design model was reverse engineered using [19]

Table 7: Case Study Projects

the bank are emulated. A simulated bank handles the incoming transactions �

is withdrawal over limit? �, manages accounts and security.

The class diagram of this project depicts an overview of the system. Se-

quence diagrams show, session management, startup, shutdown and transaction

handling.

biter This project implements and describes a robot to participate in a

robocup. The robot maintains a world model, containing itself, other play-

ers, opponents and the ball. Strategical calculations down to calculations for

positioning or how to best kick the ball are handled.

Several class diagrams describe not only the overview of the system but as

well more detailed aspects of the robot.

Checkers Checkers, or draughts, is a strategy board game. On a chess board

(8x8) a player has 12 pieces, which can move and capture only diagonally.

Straight movements are only allowed after a piece has been crowned. This

project implements this game and as well provides a GUI.

The class diagram shows a detailed overview of the game. Several sequence

diagrams show algorithms of the system (i.e., if a move is legal).

GameOfLife This project was used throughout the thesis to discuss concepts

of inconsistent development artifacts. It is an implementation of Conway's GoL,

a cellular automaton devised in 1970. The game is a non-player game, the

34



progress is completely determined by its initial state and rules inherit to the

game. The initial state is a two-dimensional orthogonal grid of square cells,

which is either dead or alive. Each cell, regardless of dead or alive, interacts

with its neighbour cells (at maximum 8 cells, which are directly adjacent) and

determines from the the following rules its next state:

• A living cell with fewer than two neighbours dies of under-population.

• A living cell with two or three neighbours survives into the next generation.

• A living cell with more than three neighbours dies of over-population.

• A dead cell with exactly three living neighbour cells becomes a living cell

in the next generation (reproduction).

GoL is a simpli�cation of a problem stated by John von Neumann in 1940,

who attempted to build a hypothetical machine reproducing itself.

The diagrams used for this project where mostly discussed throughout the

paper.

SMTSolver An Satis�able Modulo Theories (SMT) [?] solver framework for

Java. SMT is a decision problem for logical formulas, in which di�erent back-

ground theories are combined and expressed in �rst-order logic. Examples of

such theories are, theory of real numbers, theory of integers, theory of data

structures (e.g., list, array or bit vectors).

For this project a class diagram were given and sequence diagrams specifying

initialization of data structures and algorithms used.

TaxiSystem An implementation of a taxi system, drivers have to log on/o�

to a central report cab rides and as well are observed by a GPS.

The class diagram shows the system overview, sequence diagrams show de-

tailed interactions like logging on, logging of or rejects.

TestService The project we used to test our approach during implementation.

It contains a loosely coupled set of class-, sequence- and state machine-

diagrams. Di�erent semantics were collected from code generators and as well

from examples employed from books.

35



VOD3 An implementation of a video on demand system. Contained is a

MPEG decoder, server, client and communication among those. This part of

the system contains no GUI.

Class diagrams show the entities of the system. Sequence diagrams depict

in detail receiving and decoding headers, receiving and processing single frames

of a movie. The process of selecting and playing/stopping is as well detailed

modelled in detail.

6.2.2 Usability

The OCL de�nition was introduced in UML in release version 1.3 1996, followed

by an important revision 2003 labeled as 2.0. OCL, as previously stated, is well

known constraint language. Thus, as OCL usually constrains UML models, the

Java metamodel is the only unknown part to developers. This circumstance

allows the assumption that the initial learning phase is quite short for someone

who already knows OCL and UML. Part of the de�nition of usability (de�ned

from Jakob Nielsen [34]) is learnability since our tool requires the user to learn

only one additional metamodel, it is save to assume it ful�lls this requirement.

As well for the rest of the de�nition: e�ciency, see further on; memorability,

the tool extends the IBM RSA-GUI and follows the style guidelines; errors,

e.g. syntax failure, feedback is provided to recover from failure and �nally

satisfaction is given by the satisfying the previous points.

6.2.3 Computational Scalability

To validate the computational scalability of our approach, we systematically

changed elements in each of our 10 projects and captured the time required for

processing the change (i.e., the time required for re-evaluation all consistency

rule instances whose scope contained the changed element). Speci�cally, we

ensured that each element that was present in a consistency rule instance's scope

was changed. Furthermore, each element change triggered a full re-evaluation

of all a�ected consistency rules instances. Raw data of the tests can be accessed

at [28].

Mean and median times were observed and used for our analysis.2

For the validation we used an Intel(R) Core i7-3610QM machine with 8GB

of memory running Windows 7 Professional. Figure 13(a) displays the mean

2Note that we did not use any optimization mechanisms (i.e., [35]) for the Model/Analyzer
in order to produce valid and comparable results for incremental consistency checkers.

36



processing times per a�ected consistency rule instance for a change depending

on the project. Additional Fig. 13(b) shows the mean a�ected instances for a

change. Although total processing times do depend on the project, note that

observed processing times per a�ected instance stay in the interval of minimum

30 ms and 85 maximum ms for all projects. This indicates that the total pro-

cessing time does depend primarily on project-speci�c model characteristics but

not on model sizes or the total number of consistency rule instances. Moreover,

the total processing times also remain below 50 ms on average, which is still an

acceptable time for tool users [34].

The time required to evaluate a consistency rule instance is determined pri-

marily by the size of its scope, which depends on how the consistency rule is

written, how it uses Navigation Links, and also the speci�c characteristics of

the evaluated elements (e.g., the number of elements in an accessed collection).

In Fig. 13(c), the mean number of scope elements per rule instance is shown

for each project. The results are similar to those observed in previous validations

of the Model/Analyzer [17] where similar models but only consistency rules for

checking consistency within design models where used. Note that scope sizes

remain relatively constant except for PR10.

This is due to the characteristics of the project itself, most consistency rule

instances of PR10 have a scope size similar to the other projects, whereas few

instances consist of a scope size beyond 200 elements. However, this does not

a�ect the mean processing time per rule instance signi�cantly, as shown in

Fig. 13(a).

Overall, the obtained results indicate that the evaluations times of approach

and consistency rules scale and that MCCC provides immediate feedback to

developers.

6.2.4 Memory Consumption

Given that the evaluation mechanism uses a scope increases the evaluation

performance at the cost of increased memory consumption. Therefore, we

have to investigate the memory consumption increase with increasing project

size. Three factors in�uence the memory consumption of MCCC: i) storage

of Navigation Links, ii) memory consumption of the Ecore code representa-

tion, and iii) memory consumption of the evaluation mechanism. For point i),

we observed that memory consumption was negligible as navigation links are

implemented in a simple map of a String to an Object-reference. For point

37



(a) Comparison of Total Processing Time

(b) Comparison of a�ected Instances

(c) Comparison of Scope Size

Figure 13: Validation Results

ii), our case studies showed that for all projects the in-memory representation

required less space than the on-disk plain text version. Finally, for point iii),

Fig. 13(c) depicts that there is little correlation between mean scope sizes and

project sizes, indicating that memory consumption per rule instance is generally

38



independent of the project size. The total memory consumption is expected to

grow linearly with the number of consistency rule instances, which typically grow

linearly with project size [17]. Therefore, the conducted case study showed that

our approach scales in both terms, processing times and memory consumption.

MCCC is thus suitable for being used in large-scale development projects.

6.3 Applicability and Limitations

Applicability. As the conducted case study has shown, our approach is ap-

plicable to UML as modeling language and Java as programming language and

shows e�ciently inconsistencies among those. However, our consistency rules

assume that the Model describes elements that can also be found in the Code

(therefore the Model should be on nearly implementation level). Consider now

that the Model could also only show the domain entities. Thus, on a higher

level of abstraction than the implementation. Reasoning about model-and-code

consistency then can not produce valid assumptions. On the other hand, our ap-

proach needs at least in principle a di�erence in either level of abstraction and/or

semantics between design model and source code to check consistency. If, for

example, the code representation is on the same abstraction level and semanti-

cally equal to its model, the implementation is the design model itself. Another

bene�t of using an Integration Layer and providing a single metamodel view

to the consistency checker is the possibility of integrating multiple development

artifacts of the same kind (e.g., source code in di�erent programming languages

or multiple design models that conform to di�erent metamodels). However,

this increases slightly the complexity regarding the heuristics-based calculation

of links. Despite that, it would not a�ect consistency rules � except for more

references available for navigation.

Development Process. Development projects often start with only one

artifact available, relying on code generators or reverse engineering techniques

to produce the second artifact automatically. However, our approach needs (ini-

tial versions of) both artifacts to provide results. Thus, MCCC does not aim to

replace artifact-generating technologies but it provides a complementary tech-

nology that addresses existing issues. In practice, such technologies can be used

to get an initial skeleton of the implementation or a reverse engineered design

model automatically. Our approach can then detect inconsistencies between ini-

tial artifact versions that are based on unintended semantics used by the code

generator or reverse engineering method, respectively. During further evolution

39



of artifacts during development, MCCC detects inconsistencies introduced by

either developer.

Feedback. Each detected inconsistency provides meaningful feedback to

developers. In addition to simply informing them about the existence of an

inconsistency, it also contains information about the location and the kind of

the inconsistency. Moreover, it can be utilized to provide to developers a list of

possible repairs automatically [11]. Although those repairs are often abstract

and require active user input, they also reduce signi�cantly the e�ort of �nding

suitable solutions for inconsistencies.

Technical Limitations. Regarding the prototype implementation, there

are only few prerequisites a project must adhere for our tool to be applied, as

discussed in Section 6.1. Speci�cally, the tool requires Ecore model representa-

tions from design model and source code. However, technologies for generating

and managing such representations from source code are available (e.g., [31, 6])

and common modelling tools are based on EMF [19, 20]. Thus, the restriction

that a model-based representation is needed does not limit the general applica-

bility of our approach in practice.

Overall, we believe that our approach is generally applicable and is an en-

hancement to MDE-based software processes.

40



7 OCL Consistency Rules

Table 6 gives an overview of the currently implemented consistency rules and

a short description, but neither was discussed in detail. In Section 10 all con-

straints and queries are listed, partially shortened for better readability. In the

following sections each consistency rule and the queries used by those will be dis-

cussed. For each rule holds, feedback will be provided for speci�c Model or Code

elements, to enable developers to deduce the location of the inconsistency. For

instance, instead of validating a UML::Class on its whole, with all its properties

and operations, we decided to evaluate a UML::Property or UML::Operation

in speci�c.

7.1 Class Diagram

Class diagrams describe the domain elements and their relations used in a soft-

ware system. Chosen elements for consistency rules were, UML::Association,

UML::Usage, UML::Property, UML::Operation, UML::EnumerationLiteral,

interface-implementation and inheritance.

7.1.1 AssociationConform

UML::Associations describe relations among design model elements that are

expressed as properties of a UML:Class, UML::Interface or UML::Enumeration.

These should then be found in source code as well (e.g., for a directed association:

the (Java-)implementation of the using UML type should contain a Java::Field

of the (Java-)implementation of the used UML type). For undirected associa-

tions both ends should contain such a Java::Field. UML::Associations also

specify the multiplicity of both ends, so a correct translation should be ensured.

Context of AssociationConform is UML::Association, the rule di�eren-

tiates between directed associations (�rst branch, beginning at line 3) and

undirected associations (else branch, beginning at line 16). In both branches

Java::Field(s) of the corresponding types are searched.

7.1.2 AssociationFieldConform

This rule is an alteration of AssociationConform, which uses Navigation

Links on UML::Class level. This rule, however, uses links of

UML::Associations directly to its implementing Java::Field(s). Intent of this

41



rule was to show consequences of di�erent Navigation Links. A possible con-

sequence of this link could have been a shorter overall rule. However, it is not,

after evaluating the type conformance, additionally one has to prove that the

�elds are contained in corresponding types (line 5- 12). For undirected associa-

tions, two Java::Fields have to be considered, stored in fieldmtrace line 17.

Evaluating that a �eld with a correct type was linked, is done by following the

typeReference (line 3) of the Java::Field.

7.1.3 ClassFieldConform

Starting from a UML::Property the rule �rst searches the properties parent

(line 2- 9)(UML::Class, UML::Enumeration or UML::Interface). Given this

parent, the corresponding Java-type is accessed and all its �elds are stored in

a set (line 5). From this set, the rule �lters all Java::Fields with di�erent

names (line 11). Doing this prevents that more costly queries are executed on

all Java::Fields of the type. The Java::Field should then have the same

type (line 14), the same visibility modi�ers (line 15, 16), a correct translation

of multiplicities and exhibit the same abstract and static-modi�ers.

7.1.4 ClassMethodConform

ClassMethodConform works similar as ClassFieldConform, de�ned on the con-

text of a UML::Operation, it as well selects all Java::Methods of the correspond-

ing Java type of its parent (line 2- 9). Those methods are pre-�ltered based

on their name (line 11, 12). The method should then exhibit the same return

type (line 14), all of the parameters should be type and multiplicity conform

(line 16- 19). If the UML::Method is abstract, the implementing Java::Method

should as well be abstract (line 20, 21), this should as well hold for the static

modi�er (line 22, 23). The parameter list size for a Model and Code operation

pair should as well be equal. It is not guaranteed after one has proven that

for each UML parameter type exists a corresponding Java parameter type, that

they also have the same amount of parameters � two UML types could map

to the same Java type. UML::Operations consider their return type as a nor-

mal parameter, Java::Methods not, this has to be considered, resulting in the

lines 24- 33.

42



7.1.5 EnumConstantConform

This consistency rule, like ClassFieldConform and ClassMethodConform,

intends to �nd for a given UML::EnumerationLiteral a corresponding

Java::EnumConstant. As well a pre-selection based on the name (line 4) is

done. UML allows only one value for each literal, based on its type (if-expression

line 12- 27) a corresponding Java value is searched in the list of possible con-

stants (line 5) of the Java enumeration. An example are integer values (start-

ing from line 12), if the specification of the UML::EnumerationLiteral is

an integer, it is compared against a possible integer value of enumConstant.

Complex types are especially considered, starting from line 27, those are in

UML InstanceValue-types. If the UML::EnumerationLiteral is of a com-

plex type, there should exist a (line 28) UML::InstanceValue in the list of

Java::EnumConstants with a Navigation Link to the UML - type (line 30, 31)

7.1.6 GeneralizationConform

From the viewpoint of a UML::Class GeneralizationConform evaluates if a

super class exists (line 10), which has a Navigation Link to the parent of the

corresponding Java::Class. There should only exist one, since Java does not

support multiple inheritance.

7.1.7 InterfaceConform

All implemented interfaces of an UML::Class should have a Navigation Link

(line 6) leading to one of the implemented interfaces of a Java::Class.

7.1.8 UsageConform

UML::Usages can have four di�erent manifestations: i) In the using type exists

a �eld of the used type (line 2- 17). ii) There exists a method that returns the

used type (line 32). iii) A method exists with a parameter of the used type

(line 33, 34). iv) It is used as a local variable type (line 35- 39).

7.1.9 Queries

The following queries are used among all the previous discussed consistency

rules, they are used to compare visibility, multiplicity and prove type confor-

mance.

43



visibilityConform In the context of a Java::Modifier � that can be

of type, Public, Private or Protected � this query compares the

UML::VisibilityKind with the instance of the Java visibility modi�er.

multiplicityConform Currently the following translations for multiplicities

are allowed, if the upperValue of the UML multiplicity is either -1 or > 1

, then its allowed implementations can either be an array or a subtype of

java.util.Collection (line 5- 21). Otherwise, if the value is 0 or 1, then

it should neither be an array nor a reference to a collection (line 24- 40).

typeConform This query provides mappings of UML::PrimitiveTypes to

Java primitive types (line 7- 24). Since String is a complex type in Java

and in UML a primitive type it needs to be especially considered (line 48- 61).

Mappings of complex types, that are used in the project, are done by follow-

ing the Navigation Link and comparing it with the given to match type (e.g.,

line 31, 32).

containsType Context of this query is a UML::Type that should be found

in a set of Java::Statements. Java::Statements can be arbitrarily nested

(e.g., if-expression, while-loop, try-catch block). For each of those sub-blocks of

statements, the query is called again.

7.2 Sequence Diagram

Sequence diagrams model the interaction among certain design model elements.

Sequence diagrams itself have di�erent interpretations: i) An implementation

should contain only the speci�ed order of calls and nothing else. ii) Di�erent calls

can be intertwined and speci�ed calls can also be in subcalls. Assignments, calls

to collections or calculations in general are examples of intertwined statements

that will not be modelled by a developer and as well are not in the scope of

sequence diagrams. The semantics applied for sequence diagrams is that several

statements can be intertwined in the speci�ed sequence of calls.

7.2.1 InteractConform

A UML::Interaction de�nes an interaction among multiple UML

elements. From the viewpoint of a UML::Interaction, all

UML::BehaviorExecutionSpecifications are selected and its corresponding

44



outgoing calls and control �ow structures are searched in the correct order in

the associated implementation.

7.2.2 LineConform

LineConform employs a more narrow view than InteractConform. This rule

selects incoming calls to a UML::Lifeline. For each of those incoming calls,

its outgoing calls and control �ow structures are selected. The UML::Lifeline

has a type associated, the corresponding Java type should then own a method �

representing the incoming call �, containing the sequence of outgoing calls and

control �ow structures.

7.2.3 Queries

Both consistency rules consist only of a call to a query, consistency rules itself

can not be recursive and allow no loops � and are therefore not Turing complete.

However, to evaluate such complex properties, a construct like loops is necessary.

Therefore, the previous consistency rules were implemented in queries (presented

further on) as they can be recursive.

validateSubInteractionFragments/validateInteractionFragments

Both queries are very similar, they di�er only in details, therefore only

validateSubInteractionFragments will be discussed in detail. This

query �rst selects all UML::BehaviorExecutionSpecifictions, for each

of those, all contained UML::InteractionFragments (all outgoing calls,

UML::BehaviorExecutionSpecifiction, and control �ow structures,

UML::CombinedFragments= are selected (line 15- 40). For incoming calls, the

implementing method is selected in the Java::Class. Given this method,

it should contain the previously selected UML::InteractionFragments in

the order they are speci�ed (containsFragmentsInOrder line 57). All

UML::CombinedFragments that are on the same level as incoming call must be

considered separately (line 63- 67).

containsFragmentsInOrder To this query two parameters are passed, a

Sequence(UML::InteractionFragment) and a Sequence(Java::Statement).

The query considers those not as sequences but rather as queues. Based

on the �rst element in the fragments queue it searches for a correspond-

ing element in the statements queue. For example, if the �rst element in

45



fragments is a UML::BehaviorExecutionSpecification it tries to �nd a cor-

responding call in the queue of statements (line 10- 25). If a statement

does not contain the call, the �rst element of statement is discarded and

containsFragmentsInOrder is called again (line 19, 20). If a statement con-

tains the call, the �rst elements of statements and fragments are removed

and containsFragmentsInOrder is called again, now searching for the next

UML::InteractionFragment (line 22, 23).

containsCall This query is used to �nd the searched

UML::InteractionFragment in any form of Java-element (e.g., statement, con-

dition, ...). The callee-type from the UML::MessageOccurrenceSpecification

is stored in a temporary variable (line 11- 10). Then all Java::MethodCalls

are selected from the incoming Java::Commentable (lines 11- 17). If in

this set of calls exists a call with the corresponding name (as given by the

UML::MessageOccurrenceSpecification) and the correct callee-type true is

returned.

existsCombinedFragment UML sequence diagrams uses di�erent frag-

ments, that model control �ow, such as loop, alt, opt, par and many more.

Nevertheless, for this work we only consider loop, alt and opt. This query

provides possible match ups for those fragments. If a loop turns up, corre-

sponding implementing statements can be ForLoop, WhileLoop, ForeachLoop

and DoWhileLoop.

7.3 State Machine Diagram

The runtime behavior of objects or even whole systems is modelled in state

machine diagrams. Exactly this property makes it hard to devise a general

semantics, since any two classes can exhibit totally di�erent runtime behavior.

Therefore, we searched for situations, which can occur in di�erent amendments,

but nevertheless are the same. Such situations were: an implementation of

the StatePattern [26], synchronizing bu�ers and state based resources (e.g., �le

stream, network connection).

7.3.1 CallSequenceStateChartConform

This consistency rule assumes that calls to an Object alter the state of it (e.g.,

a �le that is opened). These states and possible transitions to and from a

46



state are modelled in a state machine diagram. Thus, this rule evaluates if a

sequence of calls to an Object conform to its constricting state machine. At

�rst the initial state is selected (line 3, 4), then the state to which the initial

state points is stored in a temporary variable (line 5). In the lines 11- 13 a query

is called to calculate which state is reached after the sequence of calls. If this

state is the initial state or is of type UML::FinalState, a query calculates the

reached score, otherwise (if no �nal or the initial state is reached) it is considered

as inconsistent. Recall Table 5, it summarizes a pair of corresponding state

machine and implementation with uncertainty.

calculateScore This query calculates the score reached by a sequence of calls.

It treats all incoming statements as queue and tries to �nd a match to a sequence

of transitions from a given state chart in arbitrary nested expressions. If a

statement is a container (line 8- 35), except a try-catch block, the result of this

subsequence is weighted with a constant factor to express uncertainty (line 28).

For other statements, at �rst the state reached up to this point is calculated

(line 36). If the �rst statement is a call to another method (isMethodCall

line 40), then all its statements are as well considered (line 41- 51). At last if

the �rst statement in the queue is a transition to the next state (line 56) its

target is stored in a temporary variable � possible next states are selected from

the outgoing transitions of the current state (line 53- 54). Following, the �rst

statement can be discarded from the queue and the score of the rest of sequence

can be computed (line 58, 61).

calculateStateToStatement calculateStateToStatement is similar to

calculateScore but instead of calculating a score it calculates the reached

Model-state by a sequence of Java statements.

isMethodCall If a Java::Statement contains a method call, the callee type

is returned.

isTransitionToNextState A transition in this semantics is considered as a

call to an Object, modifying the state of it. If the callee type matches the

target of the transition and the operation name matches the call event name,

respectively, the selected Java::IdentifierReference leads to the next state

of the Object (line 23- 25).

47



7.3.2 StatePattern

A general semantics for implementing state machines is devised in [26]. This

pattern is commonly known and widely used, this consistency rule tries to eval-

uate the correct implementation of the modeled state machine. The consistency

rule is de�ned in the context of a State, in this semantics each state is im-

plemented in one Java::Class. Therefore each state has an explicit link to

its corresponding implementation. In Fig. 14 one example of such a pattern is

«NavLink»

SOSStateCorrect

«NavLink»

Init

«NavLink»

O

«NavLink»

S

«NavLink»

final

«NavLink»

error

processInput()[input.compareTo

("S") == 0]

processInput()[]

processInput()[]

processInput()[input.compareTo("O") == 0]

processInput()[input.compareTo("O") == 0]

processInput()[input.compareTo("S") == 0]

Figure 14: SOS State Pattern

shown. State transitions are calls to the context variable, as in Listing 8 line 6.

A transition consists of two parts, the method containing the call to the con-

text variable and its corresponding condition. The condition should be found

in source code exactly the way its speci�ed in the state machine. This is done

from line 8 to 30 in the consistency rule.

To be more speci�c, �rst the method has to found in the Java source code

(line 9- 13). All statements are traversed to search for the call, which sets

the context-variable to the next state (line 15). If a state has subregions (e.g.,

SOSCorrect), in all its sub-states a call to the superstate (line 25) should be

found, to handle the rest of the input (line 17- 28).

Listing 8 shows an implementation of a state, shown is the processInput

method, if the input is "S" the context variable is set to the �nal state.

Also the super call in line 8 can be seen, handling the rest of the input.

48



1 /∗ @NavLink( id="SOSStateO") ∗/
2 public c lass SOSStateO extends SOSStateCorrect {

3 @Override

4 public void proces s Input ( SOSContext context , S t r ing input ) {

5 i f ( input . compareTo ( "S" ) == 0)

6 context . s e tS t a t e (new SOSStateFinal ( ) ) ;

7 else

8 super . p roce s s Input ( context , input ) ;

9 }

10 }

Listing 8: Code Snippet SOSStateO

traverseStatements The query traverses all Java::Statements passed as

arguments in order to �nd an implementation of the UML::Transition. At �rst

the possibility has to be considered that this statement is actually a container,

then all of its sub-statements have to be observed. At last, if it is no container,

a possible transition to the next state is searched in the Java::Statement. If

the UML::Transition is not found in the Java::Statement, the statement is

excluded and the query is called again.

containsTransition Transitions to a next state can be of two forms, either

with guard condition (line 5- 20) or without (line 21- 25). If a corresponding

pair of guard (implemented as condition) and call event (implemented as call)

can be found (isTransitionToNextStateClass) it is considered as transition

to the next state.

isTransitionToNextStateClass State transitions in this semantics are calls

to the context-variable, setting the new state variable. The query at �rst

gets a possible Java::IdentifierReference in a Java::Statement, from this

reference the target is extracted and compared against the Java-opposite of the

(UML) context variable. Then, in the method call the next state should either

be found as a constructor call, or, in case of a self loop, as reference to itself.

searchForSuperCall This query traverses all as arguments passed state-

ments in search of a super call.

isSuperCall This query searches for a super call in a statement. First a

possible Java::SelfReference (these encode also super-references) is stored

in a temporary variable. If the super type reference and the corresponding

49



method call name match the transitions source and the transitions call event

name, respectively, it is the searched super call.

7.3.3 SyncStateDiagram

Synchronizing bu�ers may in general exhibit some characteristics that are com-

mon to them (e.g., thread handling). At �rst this rule selects the state charac-

terizing the �metastate� (in general normal bu�ering, e.g., Fig. 3 Buffering) by

selecting the target the initial state points to. Then all transitions of the state

machine must be contained in the Java::Class (line 12- 13). Special states

like FullWait or EmptyWait of Fig. 3 have a direct Navigation Link to their

corresponding statements.

isContainedWithinJavaClass Two possibilities can exist for transitions,

either they lead to the �metastate�, then its corresponding implementation

should contain a notifyAll-call or they lead to a special state, identi�ed by

a Navigation Link.

methodLeadsToState This query searches in the incoming statements for a

condition that is coherent with the state machine. If a corresponding condition

is found, the if-expression body should contain the searched targetStatement.

50



8 Related Work

MDE is a wide and active �eld of study, di�erent challenges such as modelling

languages, separation of concern, and model manipulation and management

have to be faced. Following, research related to our approach will be discussed.

The Eclipse Modeling Framework (EMF) [6] is a modelling framework with a

code generation mechanism. A new annotation to mark source elements as

generated is introduced, presence or absence determines if the associated code

element is overwritten at code regeneration. In contrast to MCCC, EMF gener-

ates code and tries to handle the update problem via a @generated annotation.

Nevertheless, adaptations of the code generator to adapt to speci�c needs are

limited to certain details and does not allow full control.

Zheng et al. [3] introduced an approach called 1.x-way architecture-

implementation mapping, implemented in ArchStudio 4, an Eclipse-based ar-

chitecture development environment. Important principles are i) the deep sep-

aration of generated (architecture-prescribed) and non-generated (user-de�ned)

code, ii) an architecture change model, iii) architecture based code regenera-

tion, and iv) architecture change noti�cation. In their work, changes in the

architecture a�ect only architecture-prescribe code. This approach mitigates

the update problem via deep separation principle but as well tries to enforce

model and code consistency by code generation.

Heidenreich et al. [31] presented the Java Model Parser and Printer

(JaMoPP), which treats Java code like any other model, by de�ning a full

metamodel and text syntax speci�cation. They allow generating Java code

from model and vice versa. A Java program can be speci�ed as a whole in the

model and then generated, consistency is only achieved by construction and as

well do not consider incremental update of either. Cicozzi et al. [36] go a step

further, based on the CHESS Modelling Language [37] and the Action Language

for Foundational UML (ALF) [38] they produce a fully functional embedded

systems, with explicit traceability links from source to model for further mon-

itoring and adjustment to requirements. Opposite to our approach code can

not optimized by hand, iterations only occur after validating feedback from the

executed system.

DiaSpec [7] uses a speci�c Architectural Description Language (ADL) [39]

that integrates a new concept called interaction contract, which is part of the ar-

chitecture description and describes allowed interactions between components.

Its implementation is generated into a for the programmer unmodi�able frame-

51



work and therefore does not support co-evolution of either model and code.

They also rely only on the Java compiler to detect inconsistencies. ArchJava

[40] uni�es a Java program with its architecture. It is a mapping approach, the

language itself is extended to provide mappings in code.

A similar approach in terms of architecture description as part of the im-

plementation is Archface [9]. New interfaces mechanisms are used as ADL in

the design phase, in implementation phases programming interfaces. To spec-

ify the collaboration among components, Aspect-Oriented Programming (AOP)

[41] concepts such as pointcut and advice are utilized. Model and code in

both ArchJava and Archface are not two separate entities, both have to evolve

as soon as one changes.

Murphy et al. [42] use a batch like approach, which tries to exploit the drift

between architecture and implementation instead of preventing it. A high-level

structural model that is �good-enough� for reasoning is produced. An engineer

�rst de�nes a model of interest. Then, a model of the source code (depicting cer-

tain actions: call graph, event interactions) is extracted. Finally, mappings have

to be de�ned between the models. Given the high-level structural model, then

the source model and the mappings, a software reflexion model is computed

to determine inconsistencies. This approach is closest to MCCC, however con-

sistency checking is not done incrementally. Diskin et al. [43] uses consistency

checking among heterogeneous models but does not consider implementation

and also considers a di�erent approach [44] by using formal semantics. Incon-

sistencies in models can not only be detected, they also can be resolved in a

semi-automatic way. Reder et al. [11] try to detect inconsistencies only in mod-

els but also compute based on detected inconsistencies repair actions. To the

user a �ltered list of actions that transform the model is presented, from which

he can choose the �correct� one to resolve a inconsistency.

52



9 Conclusion and Future Work

In this paper, we presented MCCC, a novel approach for model-and-code con-

sistency checking that addresses issues regarding inconsistency between design

models and source code. In particular, our approach provides the following ad-

vantages: i) fast incremental consistency checking for arbitrary object-oriented-

modelling and programming languages, ii) adaptable consistency rules that sup-

port the evaluation of domain speci�c semantics, and iii) scalability that allows

instant user feedback even in big development projects with frequent artifact

evolution. The validation results show that the approach ful�lls the initial

goals de�ned in Section 1 and that it is suitable for being applied live during

modelling to actively guide developers without interrupting and even enhancing

their work�ow. However, this research allows for further development. For fu-

ture work, we plan to integrate approaches for the �xing of inconsistencies in our

prototype implementation. A further evolution of MCCC could also be in inte-

gration of arbitrary numbers of development artifacts-metamodels. Moreover,

we want to increase support for distributed development by providing a con-

sistency checking environment that integrates data from di�erent development

tools.

53



10 Appendix

10.1 Class Diagram

10.1.1 AssociationConform

1 [ Context : UML: : As soc i a t i on ]

2 i f not ( s e l f . ownedEnd−>isEmpty ( ) ) then

3 l e t f i e l d s : Set (members : : F i e ld ) =

4 i f s e l f . ownedEnd−>at ( 0 ) . type . oclIsTypeOf (uml : : Class ) then

5 i f s e l f . ownedEnd−>at ( 0 ) . type . oclAsType (uml : : Class ) . j ava t r a c e

6 <> nu l l then

7 s e l f . ownedEnd−>at ( 0 ) . type . oclAsType (uml : : Class ) . j ava t r a c e

8 . members−>s e l e c t ( oclIsTypeOf (members : : F i e ld ) )

9 else Set{} endif

10 else

11 −− Enumeration | | In t e r face

12 endif in

13 f i e l d s −>ex i s t s ( f i e l d |

14 f i e l d . typeReference . typeConform ( s e l f .memberEnd−>at ( 0 ) . type ) and

15 s e l f . memberEnd−>at ( 0 ) . mul t ip l i c i tyConform ( f i e l d ) )

16 else

17 s e l f .memberEnd−>fo rA l l ( property |

18 l e t f i e l d sA : Set (members : : F i e ld ) =

19 i f property . c l a s s . oclIsTypeOf (uml : : Class ) then

20 i f property . c l a s s . j ava t r a c e <> nu l l then

21 property . c l a s s . j ava t r a c e . g e tF i e l d s ( )

22 else Set{} endif

23 else

24 −− Enumeration | | In t e r face

25 endif in

26 i f not ( f i e ld sA−>isEmpty ( ) ) then

27 f i e ld sA−>ex i s t s ( f i e l d |

28 f i e l d . typeReference . typeConform ( property . type ) and

29 property . mul t ip l i c i tyConform ( f i e l d ) )

30 else f a l s e endif

31 )

32 endif

Listing 9: AssociationConform

10.1.2 AssociationFieldConform

1 [ Context : UML: : As soc i a t i on ]

2 i f s e l f . f i e l d t r a c e <> nu l l and not ( s e l f . ownedEnd−>isEmpty ( ) ) then

3 s e l f . f i e l d t r a c e . typeReference . typeConform ( s e l f .memberEnd−>at ( 0 ) . type ) and

4 s e l f .memberEnd−>at ( 0 ) . mul t ip l i c i tyConform ( s e l f . f i e l d t r a c e ) and

5 l e t c l a s s i f i e r : c l a s s i f i e r s : : C on c r e t eC l a s s i f i e r =

6 s e l f . f i e l d t r a c e . g e tCon ta i n i ngConc r e t eC l a s s i f i e r ( ) in

7 i f c l a s s i f i e r . oclIsTypeOf ( c l a s s i f i e r s : : Class ) then

8 c l a s s i f i e r . oclAsType ( c l a s s i f i e r s : : Class ) . umltrace =

9 s e l f . ownedEnd−>at ( 0 ) . type
10 else

54



11 −− Enumeration | | In t e r face

12 endif

13 else

14 i f s e l f . f i e l dmt r a c e <> nu l l and s e l f . ownedEnd−>isEmpty ( ) then

15 ( ( s e l f . f i e l dmtrace−>s i z e ( ) = 2) and

16 s e l f . f i e l dmtrace−>fo rA l l ( f i e l d t r a c e |

17 s e l f .memberEnd−>ex i s t s ( property |

18 f i e l d t r a c e . typeReference . typeConform ( property . type ) ) ) )

19 else

20 f a l s e

21 endif

22 endif

Listing 10: AssociationFieldConform

10.1.3 ClassFieldConform

1 [ Context : UML: : Property ]

2 l e t f i e l d s : Set (members : : F i e ld ) =

3 i f s e l f . c l a s s . oclIsTypeOf (uml : : Class ) then

4 i f s e l f . c l a s s . j ava t r a c e <> nu l l then

5 s e l f . c l a s s . j ava t r a c e . members−>s e l e c t ( oclIsTypeOf (members : : F i e ld ) )

6 else Set{} endif

7 else

8 −− Enumeration | | In t e r face

9 endif in

10 i f not ( f i e l d s −>isEmpty ( ) ) then

11 l e t nameConformFields : Set (members : : F i e ld ) = f i e l d s −>s e l e c t ( j F i e l d |

12 s e l f . name = jF i e l d . name ) in

13 nameConformFields−>ex i s t s ( j avaF i e ld |

14 j avaF i e ld . typeReference . typeConform ( s e l f . type ) and

15 javaF i e ld . g e tMod i f i e r s ()−>ex i s t s ( mod i f i e r |

16 mod i f i e r . v i s i b i l i t yCon f o rm ( s e l f . v i s i b i l i t y ) ) and

17 s e l f . mul t ip l i c i tyConform ( javaF i e ld ) and

18 s e l f . i s S t a t i c = javaF i e ld . i s S t a t i c ( )

19 )

20 else f a l s e endif

Listing 11: ClassFieldConform

10.1.4 ClassMethodConform

1 [ Context : UML: : Operation ]

2 l e t methods : Set (members : : Method ) =

3 i f s e l f . c l a s s . oclIsTypeOf (uml : : Class ) then

4 i f s e l f . c l a s s . j ava t r a c e <> nu l l then

5 s e l f . c l a s s . j ava t r a c e . members−>s e l e c t ( oclIsTypeOf (members : : Method ) )

6 else Set{} endif

7 else

8 −− Enumeration | | In t e r face

9 endif in

10 i f not (methods−>isEmpty ( ) ) then

11 l e t nameConformMethods : Set (members : : Method ) = methods−>s e l e c t ( jMethod |

12 s e l f . name = jMethod . name) in

55



13 nameConformMethods−>ex i s t s ( javamethod |

14 javamethod . typeReference . typeConform ( s e l f . type ) and

15 s e l f . ownedParameter−>fo rA l l ( uparam |

16 (uparam . d i r e c t i o n <> uml : : ParameterDirect ionKind : : r e turn ) implies

17 ( javamethod . parameters−>ex i s t s ( jparam |

18 jparam . typeReference . typeConform (uparam . type ) and

19 uparam . oclAsType (uml : : Property ) . mul t ip l i c i tyConform ( jparam ) ) ) ) and

20 s e l f . i sAbs t r a c t = javamethod . g e tMod i f i e r s ()−>ex i s t s ( mod i f i e r |

21 mod i f i e r . oclIsTypeOf ( java : : Abstract ) ) and

22 s e l f . i s S t a t i c = javamethod . g e tMod i f i e r s ()−>ex i s t s ( mod i f i e r |

23 mod i f i e r . oclIsTypeOf ( java : : S t a t i c ) ) and

24 (

25 (

26 ( s e l f . type = nu l l ) implies

27 ( s e l f . ownedParameter−>s i z e ( ) = javamethod . parameters−>s i z e ( ) )

28 ) or

29 (

30 ( s e l f . type <> nu l l ) implies

31 ( ( s e l f . ownedParameter−>s i z e ( ) − 1) = javamethod . parameters−>s i z e ( ) )

32 )

33 )

34 )

35 else f a l s e endif

Listing 12: ClassMethodConform

10.1.5 EnumConstantConform

1 [ Context : UML: : Enumerat ionLitera l ]

2 l e t javaEnum : c l a s s i f i e r s : : Enumeration = s e l f . enumeration . javaenumeration in

3 l e t nameConformEnums : Set (members : : EnumConstant ) =

4 javaEnum . constants−>s e l e c t ( enumConstant | enumConstant . name = s e l f . name) in

5 nameConformEnums−>ex i s t s ( enumConstant |

6 (

7 ( s e l f . s p e c i f i c a t i o n = nu l l and enumConstant . arguments = nu l l ) or

8 ( s e l f . s p e c i f i c a t i o n . oclIsTypeOf (uml : : L i t e r a lNu l l ) and

9 enumConstant . arguments = nu l l ) or

10 i f s e l f . s p e c i f i c a t i o n <> nu l l and

11 not ( s e l f . s p e c i f i c a t i o n . oclIsTypeOf (uml : : L i t e r a lNu l l ) ) then

12 ( i f s e l f . s p e c i f i c a t i o n . oclIsTypeOf (uml : : L i t e r a l I n t e g e r ) and

13 enumConstant . getFirstChildByType ( ( l i t e r a l s : : Dec ima l In t eg e rL i t e r a l )

14 . o c lC l a s s ( ) ) <> nu l l

15 then

16 enumConstant . getFirstChildByType ( ( l i t e r a l s : : Dec ima l In t eg e rL i t e r a l )

17 . o c lC l a s s ( ) ) . oclAsType ( l i t e r a l s : : Dec ima l In t eg e rL i t e r a l ) . decimalValue . round ( )

18 = s e l f . s p e c i f i c a t i o n . in tege rVa lue ( )

19 else f a l s e endif )

20 or

21 −− Str ing Value

22 or

23 −− DecimalInteger

24 or

25 −− Boolean

26 or

56



27 ( i f s e l f . s p e c i f i c a t i o n . oclIsTypeOf (uml : : InstanceValue ) then

28 enumConstant . getArgumentTypes()−>ex i s t s ( javaType |

29 i f javaType . oclIsTypeOf ( c l a s s i f i e r s : : Class ) then

30 javaType . oclAsType ( c l a s s i f i e r s : : Class ) . umltrace =

31 s e l f . s p e c i f i c a t i o n . oclAsType (uml : : InstanceValue ) . type

32 else

33 −− Enumeration | | In t e r face

34 endif

35 )

36 else f a l s e endif

37 s )

38 else

39 f a l s e

40 endif

41

42 )

43 )

Listing 13: EnumConstantConform

10.1.6 GeneralizationConform

1 [ Context : UML: : Class ]

2 l e t javaClas s : c l a s s i f i e r s : : Class = s e l f . j ava t r a c e in

3 i f j avaClas s <> nu l l then

4 i f s e l f . superClass−>isEmpty ( ) and j avaClas s . extends = nu l l then

5 true

6 else

7 i f j avaClas s . extends = nu l l and not ( s e l f . superClass−>isEmpty ( ) ) then

8 f a l s e

9 else

10 s e l f . superClass−>ex i s t s ( superClass |

11 superClass . j ava t r a c e = javaClas s . extends . getTarget ( ) )

12 endif

13 endif

14 else f a l s e endif

Listing 14: GeneralizationConform

10.1.7 InterfaceConform

1 [ Context : UML: : I n t e r f a c e ]

2 l e t javaClas s : c l a s s i f i e r s : : Class = s e l f . j ava t r a c e in

3 i f j avaClas s <> nu l l then

4 s e l f . ge t ImplementedInter faces ()−> fo rA l l ( u i n t e r f a c e |

5 javaClas s . implements−>ex i s t s ( j i n t e r f a c e |

6 u i n t e r f a c e . j a v a i n t e r f a c e = j i n t e r f a c e ) )

7 else f a l s e endif

Listing 15: InterfaceConform

10.1.8 UsageConform

57



1 [ Context : UML: : Usage ]

2 s e l f . target−>fo rA l l ( targetElement |

3 targetElement . oc l I sKindOf (uml : : C l a s s i f i e r ) implies

4 l e t t a r g e t : uml : : C l a s s i f i e r = targetElement . oclAsType (uml : : C l a s s i f i e r ) in

5 s e l f . source−>fo rA l l ( sourceElement |

6 sourceElement . oc l I sKindOf (uml : : C l a s s i f i e r ) implies

7 l e t f i e l d s : Set (members : : F i e ld ) =

8 i f sourceElement . oclIsTypeOf (uml : : Class ) then

9 i f sourceElement . oclAsType (uml : : Class ) . j ava t r a c e <> nu l l then

10 sourceElement . oclAsType (uml : : Class ) . j ava t r a c e

11 . members−>s e l e c t ( oclIsTypeOf (members : : F i e ld ) )

12 else Set{} endif

13 else

14 −− Enumeration | | In t e r face

15 endif in

16 f i e l d s −>ex i s t s ( j avaF i e ld | j avaF i e ld . typeReference . typeConform ( ta r g e t ) )

17 )

18 ) or

19 s e l f . target−>fo rA l l ( targetElement |

20 targetElement . oc l I sKindOf (uml : : C l a s s i f i e r ) implies

21 l e t t a r g e t : uml : : C l a s s i f i e r = targetElement . oclAsType (uml : : C l a s s i f i e r ) in

22 s e l f . source−>fo rA l l ( sourceElement |

23 sourceElement . oc l I sKindOf (uml : : C l a s s i f i e r ) implies

24 l e t methods : Set (members : : Method ) =

25 i f sourceElement . oclIsTypeOf (uml : : Class ) then

26 i f sourceElement . oclAsType (uml : : Class ) . j ava t r a c e <> nu l l then

27 sourceElement . oclAsType (uml : : Class ) . j ava t r a c e

28 . members−>s e l e c t ( oclIsTypeOf (members : : Method ) )

29 else Set{} endif

30 else

31 −− Enumeration | | In t e r face

32 endif in

33 methods−>ex i s t s (method |

34 method . typeReference . typeConform ( ta rg e t ) or

35 method . parameters−>ex i s t s ( parameter |

36 parameter . typeReference . typeConform ( ta rg e t ) ) or

37 i f method . oclIsTypeOf (members : : ClassMethod ) then

38 ta rg e t . oclAsType (uml : : Type )

39 . containsType (method . oclAsType (members : : ClassMethod )

40 . statements−>asSequence ( ) )
41 else f a l s e endif

42 )

43 )

44 )

Listing 16: UsageConform

10.1.9 Queries

1 [ Context : Java : : Modi f i e r ]

2 [ Arguments : UML: : V i s i b i l i t yK ind ]

3 ( s e l f . oc lIsTypeOf ( mod i f i e r s : : Publ ic )

4 and um l v i s i b i l i t y=uml : : V i s i b i l i t yK ind : : pub l i c ) or

5 ( s e l f . oc lIsTypeOf ( mod i f i e r s : : Pr ivate )

58



6 and um l v i s i b i l i t y=uml : : V i s i b i l i t yK ind : : p r i va t e ) or

7 ( s e l f . oc lIsTypeOf ( mod i f i e r s : : Protected )

8 and um l v i s i b i l i t y=uml : : V i s i b i l i t yK ind : : p ro tec ted )

Listing 17: visibilityConform

1 [ Context : UML: : Property ]

2 [ Arguments : Java : : Var iab le ]

3 l e t f i e l d : java : : Var iab le = javaF i e ld in

4 (

5 ( s e l f . upperValue . oclAsType (uml : : L i t e ra lUn l im i t edNatura l ) . va lue = −1 or

6 s e l f . upperValue . oclAsType (uml : : L i t e ra lUn l im i t edNatura l ) . va lue > 1) and

7 (

8 f i e l d . getArrayDimension ( ) . round ( ) > 0 or

9 i f f i e l d . typeReference . oclIsTypeOf ( types : : NamespaceClas s i f i e rRe f e rence ) then

10 f i e l d . typeReference . oclAsType ( types : : NamespaceClas s i f i e rRe f e rence )

11 . c l a s s i f i e rR e f e r e n c e s −>ex i s t s ( c l a s s i f i e r R e f |

12 i f c l a s s i f i e r R e f . t a r g e t <> nu l l

13 and c l a s s i f i e r R e f . t a r g e t . oclIsTypeOf ( c l a s s i f i e r s : : Class ) then

14 c l a s s i f i e r R e f . t a r g e t . oclAsType ( c l a s s i f i e r s : : Class )

15 . g e tA l l S u p e rC l a s s i f i e r s ()−>ex i s t s ( r e f e r e n c e |

16 r e f e r e n c e . getContain ingCompi lat ionUnit ( ) . namespaces−>at (0)
17 = ' java ' and

18 r e f e r e n c e . getContain ingCompi lat ionUnit ( ) . namespaces−>at (1)
19 = ' u t i l ' and

20 r e f e r e n c e . name = ' Co l l e c t i on ' )

21 else f a l s e endif )

22 else f a l s e endif

23 )

24 ) or

25 (

26 ( s e l f . upperValue . oclAsType (uml : : L i t e ra lUn l im i t edNatura l ) . va lue = 1 or

27 s e l f . upperValue . oclAsType (uml : : L i t e ra lUn l im i t edNatura l ) . va lue = 0) and

28 (

29 f i e l d . getArrayDimension ( ) . round ( ) = 0

30 and

31 i f f i e l d . typeReference . oclIsTypeOf ( types : : NamespaceClas s i f i e rRe f e rence ) then

32 f i e l d . typeReference . oclAsType ( types : : NamespaceClas s i f i e rRe f e rence )

33 . c l a s s i f i e rR e f e r e n c e s −>ex i s t s ( c l a s s i f i e r R e f |

34 i f c l a s s i f i e r R e f . t a r g e t <> nu l l

35 and c l a s s i f i e r R e f . t a r g e t . oclIsTypeOf ( c l a s s i f i e r s : : Class ) then

36 not ( c l a s s i f i e r R e f . t a r g e t . oclAsType ( c l a s s i f i e r s : : Class )

37 . g e tA l l S u p e rC l a s s i f i e r s ()−>ex i s t s ( r e f e r e n c e |

38 r e f e r e n c e . getContain ingCompi lat ionUnit ( ) . namespaces−>at (0)
39 = ' java ' and

40 r e f e r e n c e . getContain ingCompi lat ionUnit ( ) . namespaces−>at (1)
41 = ' u t i l ' and

42 r e f e r e n c e . name = ' Co l l e c t i on ' ) )

43 else f a l s e endif )

44 else f a l s e endif

45 )

46 )

Listing 18: multiplicityConform

59



1 [ Context : Java : : TypeReference ]

2 [ Arguments : UML: : Type ]

3 l e t type : uml : : Type = umltype in

4 ( s e l f . oc lIsTypeOf ( types : : Void ) and umltype = nu l l ) or

5 (

6 i f type <> nu l l then

7 (

8 s e l f . oc lIsTypeOf ( types : :Boolean ) and

9 type . oclIsTypeOf (uml : : PrimitiveType ) and type . name =' Boolean '

10 ) or

11 (

12 ( s e l f . oc lIsTypeOf ( types : : Int ) or

13 s e l f . oc lIsTypeOf ( types : : Short ) or

14 s e l f . oc lIsTypeOf ( types : : Long ) ) and

15 type . oclIsTypeOf (uml : : PrimitiveType )

16 and type . name =' In t eg e r '

17 ) or

18 (

19 ( s e l f . oc lIsTypeOf ( types : : Double ) or

20 s e l f . oc lIsTypeOf ( types : : Float ) ) and

21 ( ( type . oclIsTypeOf (uml : : PrimitiveType ) and

22 type . name =' Real ' ) or ( type . oclIsTypeOf (uml : : PrimitiveType )

23 and type . name =' EFloat ' ) )

24 ) or

25 (

26 i f s e l f . oc lIsTypeOf ( types : : NamespaceClas s i f i e rRe f e rence ) then

27 s e l f . oclAsType ( types : : NamespaceClas s i f i e rRe f e rence )

28 . c l a s s i f i e rR e f e r e n c e s −>ex i s t s ( c l a s s i f i e r R e f |

29 i f c l a s s i f i e r R e f . getTarget ( )

30 . oclIsTypeOf ( c l a s s i f i e r s : : Class ) then

31 c l a s s i f i e r R e f . getTarget ( )

32 . oclAsType ( c l a s s i f i e r s : : Class ) . umltrace = type

33 else

34 −− Enumeration | | In t e r face

35 endif

36 or (

37 c l a s s i f i e r R e f . typeArguments

38 −>ex i s t s ( typeArgument |

39 i f typeArgument . oclIsTypeOf ( g en e r i c s : : QualifiedTypeArgument ) then

40 l e t typeRef : types : : TypeReference = typeArgument

41 . oclAsType ( g en e r i c s : : QualifiedTypeArgument ) . typeReference in

42 typeRef . typeConform ( type )

43 else f a l s e endif )

44 )

45 )

46 else f a l s e endif

47 ) or (

48 i f type . oclIsTypeOf (uml : : PrimitiveType )

49 and type . name =' St r ing '

50 and s e l f . oc lIsTypeOf ( types : : NamespaceClas s i f i e rRe f e rence ) then

51 s e l f . oclAsType ( types : : NamespaceClas s i f i e rRe f e rence ) . c l a s s i f i e r R e f e r e n c e s

52 −>ex i s t s ( r e f e r e n c e |

53 r e f e r e n c e . t a r g e t . getContainingCompi lat ionUnit ( )

54 . namespaces−>at (0) = ' java ' and

55 r e f e r e n c e . t a r g e t . getContainingCompi lat ionUnit ( )

60



56 . namespaces−>at (1) = ' lang ' and

57 r e f e r e n c e . t a r g e t . name = ' St r ing '

58 )

59 else f a l s e endif

60 )

61 else f a l s e endif

62 )

Listing 19: typeConform

1 [ Context : UML: : Type ]

2 [ Arguments : Sequence{Java : : Statement } ]

3 l e t statements : Sequence ( statements : : Statement ) = incStatements in

4 statements−>ex i s t s ( statement |

5 i f statement . oclIsTypeOf ( statements : : Loca lVar iableStatement ) then

6 statement . oclAsType ( statements : : Loca lVar iableStatement )

7 . v a r i ab l e . typeReference . typeConform ( s e l f )

8 else

9 i f statement . oclIsTypeOf ( statements : : StatementListConta iner ) then

10 s e l f . containsType ( s e l f . oclAsType ( statements : : StatementListConta iner )

11 . statements−>asSequence ( ) )
12 else

13 i f statement . oclIsTypeOf ( statements : : StatementContainer ) then

14 s e l f . containsType (Sequence{ s e l f . oclAsType ( statements : : StatementContainer )

15 . statement}−>asSequence ( ) )

16 else f a l s e endif

17 endif

18 endif

19 )

Listing 20: containsType

10.2 Sequence Diagram

10.2.1 InteractConform

1 [ Context : UML: : I n t e r a c t i o n ]

2 s e l f . va l idateSubInteract ionFragments ( s e l f . fragment−>asSequence ( ) )

Listing 21: InteractConform

1 [ Context : UML: : I n t e r a c t i o n ]

2 [ Arguments : Sequence{UML: : Interact ionFragment } ]

3 l e t incomingFragments : Sequence (uml : : Interact ionFragment ) = iFragments in

4 l e t fragments : Sequence (uml : : Interact ionFragment ) =

5 incomingFragments−>s e l e c t ( oclIsTypeOf (uml : : Behav io rExecut i onSpec i f i c a t i on ) or

6 oclIsTypeOf (uml : : CombinedFragment))−> c o l l e c t ( oclAsType (uml : : Interact ionFragment ) ) in

7 l e t e x e c Sp e c i f i c a t i o n s : Sequence (uml : : Behav io rExecut i onSpec i f i c a t i on ) =

8 incomingFragments−>s e l e c t ( oclIsTypeOf (uml : : Behav io rExecut i onSpec i f i c a t i on ) )

9 −>c o l l e c t ( oclAsType (uml : : Behav io rExecut i onSpec i f i c a t i on ) ) in

10 e x e cSp e c i f i c a t i o n s−>fo rA l l (msg |

11 l e t type : uml : : Type = msg . s t a r t . oclAsType (uml : : MessageOccur renceSpec i f i ca t i on )

12 . message . r ece iveEvent . oclAsType (uml : : Behav io rExecut i onSpec i f i c a t i on )

13 . covered−>asSequence()−> f i r s t ( ) . r e p r e s en t s . type in

61



14 l e t subFragments : Sequence (uml : : Interact ionFragment ) =

15 fragments−>s e l e c t ( fragment |

16 incomingFragments−>asSequence()−>indexOf (msg) <

17 incomingFragments−>asSequence()−>indexOf ( fragment ) and

18 incomingFragments−>asSequence()−>indexOf ( fragment ) <

19 incomingFragments−>asSequence()−>indexOf (msg . f i n i s h )

20 and

21 ( i f fragment . oclIsTypeOf (uml : : CombinedFragment ) then

22 fragment . oclAsType (uml : : CombinedFragment ) . covered−>ex i s t s ( l i f e l i n e |

23 l i f e l i n e . r ep r e s en t s . type = type )

24 else

25 i f fragment . oclIsTypeOf (uml : : Behav io rExecut i onSpec i f i c a t i on ) then

26 fragment . oclAsType (uml : : Behav io rExecut i onSpec i f i c a t i on )

27 . s t a r t . oclAsType (uml : : MessageOccur renceSpec i f i ca t ion )

28 . message . sendEvent . oclAsType (uml : : MessageOccur renceSpec i f i ca t i on )

29 . covered−>asSequence()−> f i r s t ( ) . r e p r e s en t s . type = type

30 else f a l s e endif

31 endif )

32 ) in

33 l e t sFragments : Sequence (uml : : Interact ionFragment ) = subFragments

34 −>s e l e c t ( fragment | not ( subFragments−>ex i s t s ( en c l o s i n g |

35 en c l o s i n g . oclIsTypeOf (uml : : Behav io rExecut i onSpec i f i c a t i on ) and

36 incomingFragments−>indexOf ( en c l o s i n g ) <

37 incomingFragments−>indexOf ( fragment ) and

38 incomingFragments−>indexOf ( fragment ) <

39 incomingFragments−>indexOf ( en c l o s i n g

40 . oclAsType (uml : : Behav io rExecut i onSpec i f i c a t i on ) . f i n i s h ) ) ) ) in

41 i f type . oclIsTypeOf (uml : : I n t e r f a c e ) then t rue else

42 l e t methods : Set (members : : Method ) =

43 i f type . oclIsTypeOf (uml : : Class ) then

44 i f type . oclAsType (uml : : Class ) . j ava t r a c e <> nu l l then

45 type . oclAsType (uml : : Class ) . j ava t r a c e . getMethods ( )

46 else Set{} endif

47 else

48 −− Enumeration

49 endif in

50 l e t corrMethod : Sequence (members : : ClassMethod ) =

51 methods−>s e l e c t (method | method . oclIsTypeOf (members : : ClassMethod )

52 and method . name =

53 msg . s t a r t . oclAsType (uml : : MessageOccur renceSpec i f i ca t i on ) . message . name)

54 −>c o l l e c t ( oclAsType (members : : ClassMethod))−>asSequence ( ) in

55 i f not ( sFragments−>isEmpty ( ) ) and not ( corrMethod−>isEmpty ( ) ) then

56 corrMethod−>ex i s t s (method |

57 msg . containsFragmentsInOrder ( sFragments , method . statements−>asSequence ( ) ) )
58 else

59 sFragments−>isEmpty ( ) and not ( corrMethod−>isEmpty ( ) )

60 endif

61 endif

62 ) and

63 l e t containingCombinedFragments : Sequence (uml : : CombinedFragment ) =

64 fragments−>s e l e c t ( oclIsTypeOf (uml : : CombinedFragment ) )

65 −>c o l l e c t ( oclAsType (uml : : CombinedFragment ) ) in

66 containingCombinedFragments−>fo rA l l ( cFragment | cFragment . operand−>fo rA l l ( op |

62



67 s e l f . va l idateSubInteract ionFragments ( op . fragment−>asSequence ( ) ) ) )

Listing 22: validateSubInteractionFragments

10.2.2 LineConform

1 [ Context : UML: : L i f e l i n e ]

2 s e l f . va l i da t e In t e rac t i onFragment s ( s e l f . i n t e r a c t i o n . fragment−>asSequence ( ) )

Listing 23: LineConform

1 [ Context : UML: : L i f e l i n e ]

2 [ Arguments : Sequence{UML: : Interact ionFragment } ]

3 l e t type : uml : : Type = s e l f . r e p r e s en t s . type in

4 l e t incomingFragments : Sequence (uml : : Interact ionFragment ) = iFragments in

5 l e t fragments : Sequence (uml : : Interact ionFragment ) =

6 iFragments−>s e l e c t ( fragment |

7 i f fragment . oclIsTypeOf (uml : : CombinedFragment ) then

8 fragment . oclAsType (uml : : CombinedFragment ) . covered−>ex i s t s ( l i f e l i n e |

9 l i f e l i n e . r ep r e s en t s . type = type )

10 else f a l s e endif or

11 i f fragment . oclIsTypeOf (uml : : Behav io rExecut i onSpec i f i c a t i on ) then

12 fragment . oclAsType (uml : : Behav io rExecut i onSpec i f i c a t i on )

13 . s t a r t . oclAsType (uml : : MessageOccur renceSpec i f i ca t i on )

14 . message . r ece iveEvent . oclAsType (uml : : MessageOccur renceSpec i f i ca t i on )

15 . covered−>asSequence()−> f i r s t ( ) . r e p r e s en t s . type = type or

16 fragment . oclAsType (uml : : Behav io rExecut i onSpec i f i c a t i on )

17 . s t a r t . oclAsType (uml : : MessageOccur renceSpec i f i ca t i on )

18 . message . sendEvent . oclAsType (uml : : MessageOccur renceSpec i f i ca t i on )

19 . covered−>asSequence()−> f i r s t ( ) . r e p r e s en t s . type = type

20 else f a l s e endif ) in

21 l e t incomingMsgs : Sequence (uml : : Behav io rExecut i onSpec i f i c a t i on ) =

22 fragments−>s e l e c t ( oclIsTypeOf (uml : : Behav io rExecut i onSpec i f i c a t i on ) )

23 −>c o l l e c t ( oclAsType (uml : : Behav io rExecut i onSpec i f i c a t i on ) )

24 −>s e l e c t ( inc |

25 inc . s t a r t . oclAsType (uml : : MessageOccur renceSpec i f i ca t i on )

26 . message . r ece iveEvent . oclAsType (uml : : MessageOccur renceSpec i f i ca t ion )

27 . covered−>asSequence()−> f i r s t ( ) . r e p r e s en t s . type = type ) in

28 incomingMsgs−>fo rA l l ( incMsg |

29 l e t subFragments : Sequence (uml : : Interact ionFragment ) =

30 fragments−>s e l e c t ( fragment |

31 incomingFragments−>asSequence()−>indexOf ( incMsg ) <

32 incomingFragments−>asSequence()−>indexOf ( fragment ) and

33 incomingFragments−>asSequence()−>indexOf ( fragment ) <

34 incomingFragments−>asSequence()−>indexOf ( incMsg . f i n i s h ) and

35 ( i f fragment . oclIsTypeOf (uml : : CombinedFragment ) then

36 fragment . oclAsType (uml : : CombinedFragment ) . covered−>ex i s t s ( l i f e l i n e |

37 l i f e l i n e . r ep r e s en t s . type = type )

38 else

39 i f fragment . oclIsTypeOf (uml : : Behav io rExecut i onSpec i f i c a t i on ) then

40 fragment . oclAsType (uml : : Behav io rExecut i onSpec i f i c a t i on )

41 . s t a r t . oclAsType (uml : : MessageOccur renceSpec i f i ca t ion )

42 . message . sendEvent . oclAsType (uml : : MessageOccur renceSpec i f i ca t i on )

43 . covered−>asSequence()−> f i r s t ( ) . r e p r e s en t s . type = type

63



44 else f a l s e endif

45 endif ) ) in

46 l e t sFragments : Sequence (uml : : Interact ionFragment ) =

47 subFragments−>s e l e c t ( fragment | not ( subFragments−>ex i s t s ( en c l o s i n g |

48 en c l o s i n g . oclIsTypeOf (uml : : Behav io rExecut i onSpec i f i c a t i on ) and

49 incomingFragments−>indexOf ( en c l o s i n g ) <

50 incomingFragments−>indexOf ( fragment ) and

51 incomingFragments−>indexOf ( fragment ) <

52 incomingFragments−>indexOf ( en c l o s i n g

53 . oclAsType (uml : : Behav io rExecut i onSpec i f i c a t i on ) . f i n i s h ) ) ) ) in

54 i f type . oclIsTypeOf (uml : : I n t e r f a c e ) then t rue else

55 l e t methods : Set (members : : Method ) =

56 i f type . oclIsTypeOf (uml : : Class ) then

57 i f type . oclAsType (uml : : Class ) . j ava t r a c e <> nu l l then

58 type . oclAsType (uml : : Class ) . j ava t r a c e . getMethods ( )

59 else Set{} endif

60 else

61 −− Enumeration

62 endif in

63 l e t corrMethod : Sequence (members : : ClassMethod ) =

64 methods−>s e l e c t (method |

65 method . oclIsTypeOf (members : : ClassMethod ) and

66 method . name =

67 incMsg . s t a r t . oclAsType (uml : : MessageOccur renceSpec i f i ca t i on ) . message . name)

68 −>c o l l e c t ( oclAsType (members : : ClassMethod))−>asSequence ( ) in

69 i f not ( sFragments−>isEmpty ( ) ) and not ( corrMethod−>isEmpty ( ) ) then

70 corrMethod−>ex i s t s (method |

71 incMsg . containsFragmentsInOrder ( sFragments , method

72 . statements−>asSequence ( ) ) )
73 else

74 sFragments−>isEmpty ( ) and not ( corrMethod−>isEmpty ( ) )

75 endif

76 endif

77 ) and

78 l e t containingCombinedFragments : Sequence (uml : : CombinedFragment ) =

79 fragments−>s e l e c t ( oclIsTypeOf (uml : : CombinedFragment ) )

80 −>c o l l e c t ( oclAsType (uml : : CombinedFragment ) ) in

81 containingCombinedFragments−>fo rA l l ( cFragment |

82 cFragment . operand−>fo rA l l ( op |

83 s e l f . va l ida t e In t e rac t i onFragment s ( op . fragment−>asSequence ( ) ) ) )

Listing 24: validateInteractionFragments

1 [ Context : UML: : Beha ivo rExecut i onSpec i f i c a t i on ]

2 [ Arguments : Sequence{UML: : Interact ionFragment } , Sequence{Java : : Statement } ]

3 l e t fragments : Sequence (uml : : Interact ionFragment ) = iFragments in

4 l e t statements : Sequence ( statements : : Statement ) = incStatements in

5 l e t type : uml : : Type = s e l f . s t a r t . oclAsType (uml : : MessageOccur renceSpec i f i ca t ion )

6 . message . r ece iveEvent . oclAsType (uml : : MessageOccur renceSpec i f i ca t i on )

7 . covered−>asSequence()−> f i r s t ( ) . r e p r e s en t s . type in

8 i f fragments−>isEmpty ( ) then t rue else

9 i f statements−>isEmpty ( ) then f a l s e else

10 i f fragments−>f i r s t ( ) . oclIsTypeOf (uml : : Behav io rExecut i onSpec i f i c a t i on ) then

11 l e t toSearch : commons : : Commentable =

12 i f statements−>f i r s t ( ) . oclIsTypeOf ( statements : : Condit ion ) then

64



13 statements−>f i r s t ( ) . oclAsType ( statements : : Condit ion ) . cond i t i on

14 else

15 −− other i n i t i a l i z e r s or the f i r s t statement

16 endif in

17 i f fragments−>f i r s t ( ) . oclAsType (uml : : Behav io rExecut i onSpec i f i c a t i on )

18 . c on ta in sCa l l ( toSearch ) then

19 s e l f . containsFragmentsInOrder ( fragments

20 −>exc lud ing ( fragments−>f i r s t ( ) ) , s tatements )

21 else

22 s e l f . containsFragmentsInOrder ( fragments , statements

23 −>exc lud ing ( statements−>f i r s t ( ) ) )

24 endif

25 else

26 i f fragments−>f i r s t ( ) . oclIsTypeOf (uml : : CombinedFragment ) then

27 l e t cFragment : uml : : CombinedFragment =

28 fragments−>f i r s t ( ) . oclAsType (uml : : CombinedFragment ) in

29 l e t operand : uml : : Interact ionOperatorKind =

30 cFragment . i n t e rac t i onOpera to r in

31 i f cFragment . existsCombinedFragment ( statements−>f i r s t ( ) ) then

32 i f operand = uml : : Interact ionOperatorKind : : loop

33 or operand = uml : : Interact ionOperatorKind : : opt then

34 l e t subStatements : Sequence ( statements : : Statement ) =

35 i f statements−>f i r s t ( ) . oclAsType ( statements : : StatementContainer )

36 . statement . oclIsTypeOf ( statements : : Block ) then

37 statements−>f i r s t ( ) . oclAsType ( statements : : StatementContainer )

38 . statement . oclAsType ( statements : : Block ) . statements−>asSequence ( )
39 else

40 Sequence{ statements−>f i r s t ( )

41 . oclAsType ( statements : : StatementContainer ) . statement }

42 endif in

43 s e l f . containsFragmentsInOrder ( fragments−>f i r s t ( )

44 . oclAsType (uml : : CombinedFragment ) . operand−>asSequence()−> f i r s t ( )

45 . fragment−>asSequence()−> s e l e c t ( subFragment |

46 i f subFragment . oclIsTypeOf (uml : : CombinedFragment ) then

47 subFragment . oclAsType (uml : : CombinedFragment )

48 . covered−>ex i s t s ( l i f e l i n e |

49 l i f e l i n e . r ep r e s en t s . type = type )

50 else f a l s e endif or (

51 i f subFragment . oclIsTypeOf (uml : : Behav io rExecut i onSpec i f i c a t i on ) then

52 subFragment . oclAsType (uml : : Behav io rExecut i onSpec i f i c a t i on )

53 . s t a r t . oclAsType (uml : : MessageOccur renceSpec i f i ca t ion )

54 . message . sendEvent . oclAsType (uml : : MessageOccur renceSpec i f i ca t i on )

55 . covered−>asSequence()−> f i r s t ( ) . r e p r e s en t s . type = type

56 else f a l s e endif ) )

57 , subStatements )

58 else

59 i f statements−>f i r s t ( ) . oclAsType ( statements : : Condit ion )

60 . e l s eStatement <> nu l l then

61 l e t f i r s tOp t i on : Sequence ( statements : : Statement ) =

62 i f statements−>f i r s t ( ) . oclAsType ( statements : : Condit ion )

63 . statement . oclIsTypeOf ( statements : : Block ) then

64 statements−>f i r s t ( ) . oclAsType ( statements : : Condit ion )

65 . statement . oclAsType ( statements : : Block ) . statements−>asSequence ( )
66 else

67 Sequence{ statements−>f i r s t ( ) . oclAsType ( statements : : Condit ion ) . statement }

65



68 endif in

69 l e t secondOption : Sequence ( statements : : Statement ) =

70 i f statements−>f i r s t ( ) . oclAsType ( statements : : Condit ion )

71 . e l s eStatement . oclIsTypeOf ( statements : : Block ) then

72 statements−>f i r s t ( ) . oclAsType ( statements : : Condit ion )

73 . e l s eStatement . oclAsType ( statements : : Block )

74 . statements−>asSequence ( )
75 else

76 Sequence{ statements−>f i r s t ( ) . oclAsType ( statements : : Condit ion )

77 . e l s eStatement }

78 endif in

79 s e l f . containsFragmentsInOrder (

80 fragments−>f i r s t ( ) . oclAsType (uml : : CombinedFragment ) . operand−>asSequence ( )
81 −>f i r s t ( ) . fragment−>asSequence()−> s e l e c t ( subFragment |

82 i f subFragment . oclIsTypeOf (uml : : CombinedFragment ) then

83 subFragment . oclAsType (uml : : CombinedFragment ) . covered−>ex i s t s ( l i f e l i n e |

84 l i f e l i n e . r ep r e s en t s . type = type )

85 else f a l s e endif or (

86 i f subFragment . oclIsTypeOf (uml : : Behav io rExecut i onSpec i f i c a t i on ) then

87 subFragment . oclAsType (uml : : Behav io rExecut i onSpec i f i c a t i on )

88 . s t a r t . oclAsType (uml : : MessageOccur renceSpec i f i ca t ion ) . message

89 . sendEvent . oclAsType (uml : : MessageOccur renceSpec i f i ca t i on ) . covered

90 −>asSequence()−> f i r s t ( ) . r e p r e s en t s . type = type

91 else f a l s e endif ) )

92 , f i r s tOp t i on ) and

93 s e l f . containsFragmentsInOrder (

94 fragments−>f i r s t ( ) . oclAsType (uml : : CombinedFragment ) . operand−>asSequence ( )
95 −>at ( 1 ) . fragment−>asSequence()−> s e l e c t ( subFragment |

96 i f subFragment . oclIsTypeOf (uml : : CombinedFragment ) then

97 subFragment . oclAsType (uml : : CombinedFragment ) . covered−>ex i s t s ( l i f e l i n e |

98 l i f e l i n e . r ep r e s en t s . type = type )

99 else f a l s e endif or (

100 i f subFragment . oclIsTypeOf (uml : : Behav io rExecut i onSpec i f i c a t i on ) then

101 subFragment . oclAsType (uml : : Behav io rExecut i onSpec i f i c a t i on )

102 . s t a r t . oclAsType (uml : : MessageOccur renceSpec i f i ca t ion ) . message

103 . sendEvent . oclAsType (uml : : MessageOccur renceSpec i f i ca t i on )

104 . covered−>asSequence()−> f i r s t ( ) . r e p r e s en t s . type = type

105 else f a l s e endif ) )

106 , secondOption )

107 else

108 s e l f . containsFragmentsInOrder ( fragments ,

109 statements−>exc lud ing ( statements−>f i r s t ( ) ) )

110 endif

111 endif

112 and

113 s e l f . containsFragmentsInOrder ( fragments−>exc lud ing ( fragments−>f i r s t ( ) ) ,

114 statements−>exc lud ing ( statements−>f i r s t ( ) ) )

115 else

116 s e l f . containsFragmentsInOrder ( fragments ,

117 statements−>exc lud ing ( statements−>f i r s t ( ) ) )

118 endif

119 else

120 f a l s e −− should not happen in any case

121 endif

66



122 endif endif endif

Listing 25: containsFragmentsInOrder

1 [ Context : UML: : Behav io rExecut i onSpec i f i c a t i on ]

2 [ Arguments : Java : : Commentable ]

3 l e t inc : commons : : Commentable = incoming in

4 i f i nc <> nu l l then

5 i f not ( inc . getChildrenByType ( ( r e f e r e n c e s : : MethodCall ) . o c lC l a s s ())−>isEmpty ( ) )

6 or i nc . oclIsTypeOf ( r e f e r e n c e s : : MethodCall ) then

7 l e t rece iveType : uml : : Type =

8 s e l f . s t a r t . oclAsType (uml : : MessageOccur renceSpec i f i ca t i on ) . message

9 . rece iveEvent . oclAsType (uml : : MessageOccur renceSpec i f i ca t ion )

10 . covered−>asSequence()−> f i r s t ( ) . r e p r e s en t s . type in

11 l e t c a l l s : Sequence ( r e f e r e n c e s : : MethodCall ) =

12 i f i nc . oclIsTypeOf ( r e f e r e n c e s : : MethodCall ) then

13 Sequence{ inc . oclAsType ( r e f e r e n c e s : : MethodCall )}

14 else

15 inc . getChildrenByType ( ( r e f e r e n c e s : : MethodCall ) . o c lC l a s s ( ) )

16 −>asSequence()−> c o l l e c t ( oclAsType ( r e f e r e n c e s : : MethodCall ) )

17 endif in

18 c a l l s−>ex i s t s ( c a l l |

19 c a l l . t a r g e t . name =

20 s e l f . s t a r t . oclAsType (uml : : MessageOccur renceSpec i f i ca t i on ) . message . name and

21 l e t jType : types : : Type =

22 i f c a l l . t a r g e t <> nu l l then

23 i f c a l l . t a r g e t . oclAsType (members : : Method )

24 . g e tCon ta in i ngConc r e t eC l a s s i f i e r ( ) <> nu l l then

25 c a l l . t a r g e t . oclAsType (members : : Method ) . g e tCon ta i n i ngConc r e t eC l a s s i f i e r ( )

26 else

27 nu l l

28 endif

29 else nu l l endif in

30

31 i f jType . oclIsTypeOf ( c l a s s i f i e r s : : Class ) then

32 jType . oclAsType ( c l a s s i f i e r s : : Class ) . umltrace = rece iveType

33 else

34 −− Enumeration | | In t e r face

35 endif )

36 else f a l s e endif e lse f a l s e endif

Listing 26: containsCall

1 [ Context : UML: : CombinedFragment ]

2 [ Arguments : Java : : Statement ]

3 l e t operand : uml : : Interact ionOperatorKind = s e l f . i n t e ra c t i onOpera to r in

4 l e t statement : statements : : Statement = iStatement in

5 ( operand = uml : : Interact ionOperatorKind : : loop and

6 ( statement . oclIsTypeOf ( statements : : ForLoop )

7 or statement . oclIsTypeOf ( statements : : WhileLoop )

8 or statement . oclIsTypeOf ( statements : : ForEachLoop )

9 or statement . oclIsTypeOf ( statements : : DoWhileLoop ) ) )

10 or ( ( operand = uml : : Interact ionOperatorKind : : a l t

11 or operand = uml : : Interact ionOperatorKind : : opt )

67



12 and ( statement . oclIsTypeOf ( statements : : Condi t iona l )

13 or statement . oclIsTypeOf ( statements : : Condit ion ) ) )

Listing 27: existsCombinedFragment

10.3 State Machine Diagram

10.3.1 CallSequenceStateChartConform

1 [ Context : UML: : StateMachine ]

2 i f s e l f . javamethod <> nu l l then

3 l e t i n i t : uml : : Pseudostate = s e l f . reg ion−>asSequence()−> f i r s t ( )

4 . subvertex−>s e l e c t ( oclIsTypeOf (uml : : Pseudostate ) )

5 −>c o l l e c t ( oclAsType (uml : : Pseudostate))−>asSequence()−> f i r s t ( ) in

6 l e t s t a r t s t a t e : uml : : State = i n i t . outgoing−>asSequence ( )
7 −>f i r s t ( ) . t a r g e t . oclAsType (uml : : State ) in

8 l e t statements : Sequence ( statements : : Statement ) =

9 s e l f . javamethod . statements−>asSequence ( ) in

10 l e t context : uml : : Class = s e l f . context . oclAsType (uml : : Class ) in

11 l e t endstate : uml : : State =

12 s t a r t s t a t e . ca lcu lateStateToStatement ( s t a r t s t a t e , context , nu l l ,

13 statements ) . oclAsType (uml : : State ) in

14 i f endstate <> nu l l and ( endstate = s t a r t s t a t e

15 or endstate . oclIsTypeOf (uml : : F ina lS ta te ) ) then

16 s t a r t s t a t e . c a l c u l a t eS c o r e ( statements , s e l f . javamethod , context )

17 else 0 .0 endif

18 else 0 .0 endif

Listing 28: CallSequenceStatechartConform

1 [ Context : UML: : State ]

2 [ Arguments : Sequence{Java : : Statement } , Java : : Method , UML: : Class ]

3 l e t statements : Sequence ( statements : : Statement ) = incStatements in

4 l e t method : members : : ClassMethod = cMethod in

5 l e t context : uml : : Class = incContext in

6 i f statements = nu l l then 0 .0 else

7 i f statements−>isEmpty ( ) then 0 .0 else

8 i f statements−>f i r s t ( ) . oc l I sKindOf ( statements : : StatementContainer )

9 or statements−>f i r s t ( ) . oc l I sKindOf ( statements : : StatementListConta iner ) then

10 l e t subStatements : Sequence ( statements : : Statement ) =

11 i f statements−>f i r s t ( ) . oc l I sKindOf ( statements : : StatementContainer ) then

12 i f statements−>f i r s t ( ) . oclAsType ( statements : : StatementContainer

13 ) . statement . oclIsTypeOf ( statements : : Block ) then

14 statements−>f i r s t ( ) . oclAsType ( statements : : StatementContainer )

15 . statement . oclAsType ( statements : : Block ) . statements−>asSequence ( )
16 else

17 Sequence{ statements−>f i r s t ( ) . oclAsType ( statements : : StatementContainer ) . statement }

18 endif

19 else

20 statements−>f i r s t ( ) . oclAsType ( statements : : StatementListConta iner )

21 . statements−>asSequence ( )
22 endif in

23 l e t subScore : Real = s e l f . c a l c u l a t eS c o r e ( subStatements , method , context ) in

24 i f subScore > 0 .0 then

68



25 l e t weightedScore : Real =

26 i f statements−>f i r s t ( ) . oclIsTypeOf ( statements : : TryBlock ) then

27 subScore

28 else subScore ∗0 .9 endif in

29 l e t nextScore : Real =

30 s e l f . c a l c u l a t eS c o r e ( statements−>exc lud ing ( statements−>f i r s t ( ) ) , method , context ) in

31 i f nextScore > 0 .0 then weightedScore ∗nextScore else weightedScore endif

32 else

33 1 .0∗ s e l f . c a l c u l a t eS c o r e ( statements−>exc lud ing ( statements−>f i r s t ( ) ) , method , context )

34 endif

35 else

36 l e t cu r r en tSta t e : uml : : State =

37 s e l f . ca lcu lateStateToStatement ( s e l f , context , statements−>f i r s t ( ) ,

38 method . statements−>asSequence ( ) ) . oclAsType (uml : : State ) in

39 l e t subMethodCall : r e f e r e n c e s : : MethodCall =

40 statements−>f i r s t ( ) . isMethodCal l ( context ) . oclAsType ( r e f e r e n c e s : : MethodCall ) in

41 i f subMethodCall <> nu l l then

42 l e t subScore : Real =

43 s e l f . c a l c u l a t eS c o r e ( subMethodCall . t a r g e t . oclAsType (members : : ClassMethod )

44 . statements−>asSequence ( ) , method , context ) in

45 l e t nextScore : Real =

46 s e l f . c a l c u l a t eS c o r e ( statements−>exc lud ing ( statements−>f i r s t ( ) ) , method , context ) in

47 i f subScore > 0 .0 then

48 subScore ∗ nextScore

49 else

50 1 .0∗ nextScore
51 endif

52 else

53 l e t fo l lowup : uml : : State = cur r en tS ta t e . outgoing−>s e l e c t ( t r a n s i t i o n |

54 t r a n s i t i o n . i sTrans i t ionToNextState ( statements−>f i r s t ( ) , context ) )

55 −>asSequence()−> f i r s t ( ) . t a r g e t . oclAsType (uml : : State ) in

56 i f f o l lowup <> nu l l then

57 i f cu r r en tS ta t e = fo l lowup then −− s e l f loop

58 1 .0∗ s e l f . c a l c u l a t eS c o r e ( statements−>exc lud ing ( statements−>f i r s t ( ) ) , method , context )

59 else

60 l e t f o l l owSco r e : Real =

61 s e l f . c a l c u l a t eS c o r e ( statements−>exc lud ing ( statements−>f i r s t ( ) ) ,

62 method , context ) in

63 i f f o l l owSco r e > 0 .0 then 1 .0 ∗ f o l l owSco r e else 1 .0 endif

64 endif

65 else

66 1 .0∗ s e l f . c a l c u l a t eS c o r e ( statements−>exc lud ing ( statements−>f i r s t ( ) ) , method , context )

67 endif

68 endif

69 endif endif endif

Listing 29: calculateScore

1 [ Context : UML: : State ]

2 [ Arguments : UML: : State , UML: : Class , Java : : Statement , Sequence{Java : : Statement } ]

3 l e t cu r rS ta t e : uml : : State = cState in

4 l e t context : uml : : Class = incContext in

5 l e t stopStatement : statements : : Statement = sStatement in

6 l e t statements : Sequence ( statements : : Statement ) = incStatements in

7 i f statements−>f i r s t ( ) = stopStatement or statements−>isEmpty ( ) then

69



8 cur rS ta t e

9 else

10 i f statements−>f i r s t ( ) . oc l I sKindOf ( statements : : StatementContainer )

11 or statements−>f i r s t ( ) . oc l I sKindOf ( statements : : StatementListConta iner ) then

12 l e t subStatements : Sequence ( statements : : Statement ) =

13 i f statements−>f i r s t ( ) . oc l I sKindOf ( statements : : StatementContainer ) then

14 i f statements−>f i r s t ( ) . oclAsType ( statements : : StatementContainer )

15 . statement . oclIsTypeOf ( statements : : Block ) then

16 statements−>f i r s t ( ) . oclAsType ( statements : : StatementContainer )

17 . statement . oclAsType ( statements : : Block ) . statements−>asSequence ( )
18 else

19 Sequence{ statements−>f i r s t ( ) . oclAsType ( statements : : StatementContainer ) . statement }

20 endif

21 else

22 statements−>f i r s t ( ) . oclAsType ( statements : : StatementListConta iner )

23 . statements−>asSequence ( )
24 endif in

25 l e t fo l lowup : uml : : State =

26 s e l f . ca lcu lateStateToStatement ( cState , context ,

27 stopStatement , subStatements ) . oclAsType (uml : : State ) in

28 i f f o l lowup <> nu l l then

29 s e l f . ca lcu lateStateToStatement ( fo l lowup , context , stopStatement ,

30 statements−>exc lud ing ( statements−>f i r s t ( ) ) )

31 else

32 s e l f . ca lcu lateStateToStatement ( cState , context , stopStatement ,

33 statements−>exc lud ing ( statements−>f i r s t ( ) ) )

34 endif

35 else

36 l e t subMethodCall : r e f e r e n c e s : : MethodCall =

37 statements−>f i r s t ( ) . isMethodCal l ( context ) . oclAsType ( r e f e r e n c e s : : MethodCall ) in

38 l e t fo l lowup : uml : : State =

39 i f subMethodCall <> nu l l then

40 s e l f . ca l cu lateStateToStatement ( cState , context , stopStatement ,

41 subMethodCall . t a r g e t . oclAsType (members : : ClassMethod )

42 . statements−>asSequence ( ) ) . oclAsType (uml : : State )

43 else

44 cState . outgoing−>s e l e c t ( t r a n s i t i o n |

45 t r a n s i t i o n . i sTrans i t ionToNextState ( statements−>f i r s t ( ) , context ) )

46 −>asSequence()−> f i r s t ( ) . t a r g e t . oclAsType (uml : : State )

47 endif in

48 i f f o l lowup <> nu l l then

49 s e l f . ca lcu lateStateToStatement ( fo l lowup , context , stopStatement ,

50 statements−>exc lud ing ( statements−>f i r s t ( ) ) )

51 else

52 s e l f . ca l cu lateStateToStatement ( cState , context , stopStatement ,

53 statements−>exc lud ing ( statements−>f i r s t ( ) ) )

54 endif

55 endif endif

Listing 30: calculateStateToStatement

1 [ Context : Java : : Statement ]

2 [ Arguments : UML: : Class ]

3 l e t context : uml : : Class = incContext in

4 l e t r e f e r e n c e : r e f e r e n c e s : : Reference =

70



5 i f s e l f . oc l I sKindOf ( r e f e r e n c e s : : Reference ) then

6 s e l f . oc l I sKindOf ( r e f e r e n c e s : : Reference )

7 else

8 s e l f . getFirstChildByType ( ( r e f e r e n c e s : : Reference ) . o c lC l a s s ( ) )

9 endif in

10 i f r e f e r e n c e = nu l l then nu l l else

11 i f r e f e r e n c e . getReferencedType ( ) <> context . j ava t r a c e

12 and r e f e r e n c e . next . oclIsTypeOf ( r e f e r e n c e s : : MethodCall ) then

13 r e f e r e n c e . next

14 else nu l l endif

15 endif

Listing 31: isMethodCall

1 [ Context : UML: : Trans i t i on ]

2 [ Arguments : Java : : Statement , UML: : Class ]

3 l e t statement : statements : : Statement = incStatement in

4 l e t context : uml : : Class = incContext in

5 l e t r e f e r e n c e : r e f e r e n c e s : : I d e n t i f i e rR e f e r e n c e =

6 i f statement . oclIsTypeOf ( r e f e r e n c e s : : I d e n t i f i e rR e f e r e n c e ) then

7 statement . oclAsType ( r e f e r e n c e s : : I d e n t i f i e rR e f e r e n c e )

8 else

9 statement . getFirstChildByType ( ( r e f e r e n c e s : : I d e n t i f i e rR e f e r e n c e ) . o c lC l a s s ( ) )

10 endif in

11 i f r e f e r e n c e <> nu l l then

12 l e t jType : types : : Type =

13 i f r e f e r e n c e . t a r g e t . oclAsType ( types : : TypedElement )

14 . typeReference . oclAsType ( types : : NamespaceClas s i f i e rRe f e rence )

15 . c l a s s i f i e rR e f e r e n c e s −>asSequence()−> f i r s t ( ) <> nu l l then

16 r e f e r e n c e . t a r g e t . oclAsType ( types : : TypedElement )

17 . typeReference . oclAsType ( types : : NamespaceClas s i f i e rRe f e rence )

18 . c l a s s i f i e rR e f e r e n c e s −>asSequence()−> f i r s t ( ) . getTarget ( )

19 else nu l l endif in

20 jType = context . j ava t r a c e and

21 i f r e f e r e n c e . next <> nu l l

22 and r e f e r e n c e . next . oclIsTypeOf ( r e f e r e n c e s : : MethodCall ) then

23 r e f e r e n c e . next . oclAsType ( r e f e r e n c e s : : MethodCall ) . t a r g e t . name =

24 s e l f . t r i g g e r−>asSequence ( )
25 −>f i r s t ( ) . event . oclAsType (uml : : CallEvent ) . operat ion . name

26 else f a l s e endif

27 else f a l s e endif

Listing 32: isTransitionToNextState

10.3.2 StatePattern

1 [ Context : UML: : State ]

2 l e t methods : Sequence (members : : ClassMethod ) =

3 i f s e l f . j a va s t a t e <> nu l l then

4 s e l f . j a va s t a t e . getMethods()−> c o l l e c t ( oclAsType (members : : ClassMethod ) )

5 else Sequence{} endif in

6 l e t context : uml : : Class =

7 s e l f . conta in ingStateMachine ( ) . context . oclAsType (uml : : Class ) in

8 s e l f . outgoing−>fo rA l l ( t r a n s i t i o n |

71



9 l e t impMethod : members : : ClassMethod =

10 methods−>s e l e c t (method |

11 method . name = t r a n s i t i o n . t r i g g e r−>asSequence ( )
12 −>f i r s t ( ) . event . oclAsType (uml : : CallEvent ) . operat ion . name)

13 −>f i r s t ( ) in

14 i f impMethod <> nu l l then

15 t r a n s i t i o n . t raver seStatements ( impMethod . statements−>asSequence ( ) , context ) and

16 s e l f . reg ion−>s i z e ( ) <= 1 and

17 s e l f . reg ion−>fo rA l l ( r eg i on | r eg i on . subvertex−>c o l l e c t ( oclAsType (uml : : State ) )

18 −>f o rA l l ( s t a t e |

19 s t a t e . outgoing−>ex i s t s ( sTrans i t i on |

20 l e t smethods : Sequence (members : : ClassMethod ) =

21 s t a t e . j a va s t a t e . getMethods()−> c o l l e c t ( oclAsType (members : : ClassMethod ) ) in

22 l e t subMethod : members : : ClassMethod = smethods−>s e l e c t (method |

23 method . name = sTrans i t i on . t r i g g e r−>asSequence ( )
24 −>f i r s t ( ) . event . oclAsType (uml : : CallEvent ) . operat ion . name)−> f i r s t ( ) in

25 t r a n s i t i o n . searchForSuperCal l ( subMethod . statements−>asSequence ( ) )
26 )

27 )

28 )

29 else f a l s e endif

30 )

Listing 33: StatePattern

1 [ Context : UML: : Trans i t i on ]

2 [ Arguments : Sequence{Java : : Statement } , UML: : Class ]

3 l e t statements : Sequence ( statements : : Statement ) = incStatements in

4 l e t context : uml : : Class = incContext in

5 i f statements−>isEmpty ( ) then f a l s e else

6 i f statements−>f i r s t ( ) . oclIsTypeOf ( statements : : StatementContainer ) then

7 l e t sStatements : Sequence ( statements : : Statement ) =

8 i f statements−>f i r s t ( ) . oclAsType ( statements : : StatementContainer )

9 . statement . oclIsTypeOf ( statements : : Block ) then

10 statements−>f i r s t ( ) . oclAsType ( statements : : StatementContainer )

11 . statement . oclAsType ( statements : : Block ) . statements−>asSequence ( )
12 else

13 Sequence{ statements−>f i r s t ( )

14 . oclAsType ( statements : : StatementContainer ) . statement }

15 endif in

16 s e l f . t raver seStatements ( sStatements , context )

17 else

18 i f statements−>f i r s t ( ) . oclIsTypeOf ( statements : : StatementListConta iner ) then

19 s e l f . t raver seStatements ( statements

20 −>f i r s t ( ) . oclAsType ( statements : : StatementListConta iner )

21 . statements−>asSequence ( ) , context )
22 else

23 i f s e l f . c on ta in sTrans i t i on ( statements−>f i r s t ( ) , context ) then

24 true

25 else

26 s e l f . t raver seStatements ( statements−>exc lud ing ( statements−>f i r s t ( ) ) , context )

27 endif

28 endif

72



29 endif endif

Listing 34: traverseStatements

1 [ Context : UML: : Trans i t i on ]

2 [ Arguments : Java : : Statement , UML: : Class ]

3 l e t statement : statements : : Statement = incStatement in

4 l e t context : uml : : Class = incContext in

5 i f statement . oclIsTypeOf ( statements : : Condit ion ) and s e l f . guard <> nu l l then

6 l e t cond i t i on : statements : : Condit ion = statement . oclAsType ( statements : : Condit ion ) in

7 i f s e l f . guard . s p e c i f i c a t i o n . oclAsType (uml : : OpaqueExpression ) . body−>f i r s t ( ) =

8 cond i t i on . cond i t i on . oc lToStr ing ( ) then

9 i f cond i t i on . statement . oclIsTypeOf ( statements : : Block ) then

10 cond i t i on . statement . oclAsType ( statements : : Block ) . statements

11 −>ex i s t s ( subStatement |

12 s e l f . i sTrans i t i onToNextStateClas s ( subStatement , context ) )

13 else

14 s e l f . i sTrans i t i onToNextStateClas s ( cond i t i on . statement , context )

15 endif

16 else

17 f a l s e

18 endif or

19 s e l f . i sTrans i t i onToNextStateClas s ( cond i t i on . e l seStatement , context )

20 else

21 i f s e l f . guard = nu l l

22 and ( statement . getFirstChildByType ( ( r e f e r e n c e s : : I d e n t i f i e rR e f e r e n c e ) . o c lC l a s s ( ) ) <> nu l l

23 or statement . oclIsTypeOf ( r e f e r e n c e s : : I d e n t i f i e rR e f e r e n c e ) ) then

24 s e l f . i sTrans i t i onToNextStateClas s ( statement , context )

25 else f a l s e endif

26 endif

Listing 35: containsTransition

1 [ Context : UML: : Trans i t i on ]

2 [ Arguments : Java : : Statement , UML: : Class ]

3 l e t statement : statements : : Statement = incStatement in

4 l e t context : uml : : Class = incContext in

5 l e t r e f e r e n c e : r e f e r e n c e s : : I d e n t i f i e rR e f e r e n c e =

6 i f statement . oclIsTypeOf ( r e f e r e n c e s : : I d e n t i f i e rR e f e r e n c e ) then

7 statement . oclAsType ( r e f e r e n c e s : : I d e n t i f i e rR e f e r e n c e )

8 else

9 statement . getFirstChildByType ( ( r e f e r e n c e s : : I d e n t i f i e rR e f e r e n c e ) . o c lC l a s s ( ) )

10 endif in

11 l e t jType : types : : Type =

12 i f r e f e r e n c e . t a r g e t . oclAsType ( types : : TypedElement )

13 . typeReference . oclAsType ( types : : NamespaceClas s i f i e rRe f e rence )

14 . c l a s s i f i e rR e f e r e n c e s −>asSequence()−> f i r s t ( ) <> nu l l then

15 r e f e r e n c e . t a r g e t . oclAsType ( types : : TypedElement )

16 . typeReference . oclAsType ( types : : NamespaceClas s i f i e rRe f e rence )

17 . c l a s s i f i e rR e f e r e n c e s −>asSequence()−> f i r s t ( ) . getTarget ( ) else nu l l endif in

18 jType = context . j ava t r a c e and

19 i f r e f e r e n c e . next <> nu l l

20 and r e f e r e n c e . next . oclIsTypeOf ( r e f e r e n c e s : : MethodCall ) then

21 r e f e r e n c e . next . oclAsType ( r e f e r e n c e s : : MethodCall ) . arguments−>ex i s t s ( argument |

73



22 i f argument . oclIsTypeOf ( i n s t a n t i a t i o n s : : NewConstructorCall ) then

23 argument . oclAsType ( i n s t a n t i a t i o n s : : NewConstructorCall )

24 . typeReference . oclAsType ( types : : NamespaceClas s i f i e rRe f e rence )

25 . c l a s s i f i e rR e f e r e n c e s −>asSequence ( )
26 −>f i r s t ( ) . getTarget ( ) . oclAsType ( c l a s s i f i e r s : : Class ) . umlstate =

27 s e l f . t a r g e t

28 else

29 s e l f . source = s e l f . t a r g e t and

30 argument . oclIsTypeOf ( r e f e r e n c e s : : S e l fRe f e r en c e )

31 endif )

32 else f a l s e endif

Listing 36: isTransitionToNextStateClass

1 [ Context : UML: : Trans i t i on ]

2 [ Arguments : Sequence{Java : : Statement } ]

3 l e t statements : Sequence ( statements : : Statement ) = incStatements in

4 i f statements−>isEmpty ( ) then f a l s e else

5 i f statements−>f i r s t ( ) . oclIsTypeOf ( statements : : StatementContainer ) then

6 l e t sStatements : Sequence ( statements : : Statement ) =

7 i f statements−>f i r s t ( ) . oclAsType ( statements : : StatementContainer )

8 . statement . oclIsTypeOf ( statements : : Block ) then

9 statements−>f i r s t ( ) . oclAsType ( statements : : StatementContainer )

10 . statement . oclAsType ( statements : : Block ) . statements−>asSequence ( )
11 else

12 Sequence{ statements−>f i r s t ( ) . oclAsType ( statements : : StatementContainer ) . statement }

13 endif in

14 s e l f . searchForSuperCal l ( sStatements )

15 else

16 i f statements−>f i r s t ( ) . oclIsTypeOf ( statements : : StatementListConta iner ) then

17 s e l f . searchForSuperCal l ( statements

18 −>f i r s t ( ) . oclAsType ( statements : : StatementListConta iner )

19 . statements−>asSequence ( ) )
20 else

21 i f s e l f . i s Supe rCa l l ( statements−>f i r s t ( ) ) then

22 true

23 else

24 s e l f . searchForSuperCal l ( statements−>exc lud ing ( statements−>f i r s t ( ) ) )

25 endif

26 endif

27 endif endif

Listing 37: searchForSuperCall

1 [ Context : UML: : Trans i t i on ]

2 [ Arguments : Java : : Statement ]

3 l e t statement : statements : : Statement = incStatement in

4 l e t r e f e r e n c e : r e f e r e n c e s : : S e l fRe f e r en c e =

5 i f statement . oclIsTypeOf ( r e f e r e n c e s : : S e l fRe f e r en c e ) then

6 statement . oclAsType ( r e f e r e n c e s : : S e l fRe f e r en c e )

7 else

8 statement . getFirstChildByType ( ( r e f e r e n c e s : : S e l fRe f e r en c e ) . o c lC l a s s ( ) )

9 endif in

10 l e t jType : c l a s s i f i e r s : : Class =

74



11 i f r e f e r e n c e . s e l f <> nu l l then

12 statement . g e tCon ta i n i ngConc r e t eC l a s s i f i e r ( ) . oclAsType ( c l a s s i f i e r s : : Class ) . getSuperClass ( )

13 else nu l l endif in

14 jType . umlstate = s e l f . source and

15 i f r e f e r e n c e . next <> nu l l

16 and r e f e r e n c e . next . oclIsTypeOf ( r e f e r e n c e s : : MethodCall ) then

17 r e f e r e n c e . next . oclAsType ( r e f e r e n c e s : : MethodCall ) . t a r g e t . name =

18 s e l f . t r i g g e r−>asSequence()−> f i r s t ( ) . event . oclAsType (uml : : CallEvent ) . operat ion . name

19 else f a l s e endif

Listing 38: isSuperCall

10.3.3 SyncStateDiagram

1 [ Context : UML: : StateMachine ]

2 l e t s t a t e s : Set (uml : : Vertex ) = s e l f . reg ion−>asSequence()−> f i r s t ( ) . subvertex in

3 l e t t r a n s i t i o n s : Set (uml : : Trans i t i on ) =

4 s e l f . reg ion−>asSequence()−> f i r s t ( ) . t r a n s i t i o n

5 −>s e l e c t ( t r a n s i t i o n | not ( t r a n s i t i o n . source . oclIsTypeOf (uml : : Pseudostate ) ) ) in

6 l e t metastate : uml : : State =

7 s e l f . reg ion−>asSequence()−> f i r s t ( ) . t r a n s i t i o n

8 −>s e l e c t ( t r a n s i t i o n | t r a n s i t i o n . source . oclIsTypeOf (uml : : Pseudostate ) )

9 −>asSequence()−> f i r s t ( ) . t a r g e t . oclAsType (uml : : State ) in

10 l e t javaClas s : c l a s s i f i e r s : : Class = s e l f . context . oclAsType (uml : : Class ) . j ava t r a c e in

11 i f j avaClas s = nu l l then f a l s e else

12 t r an s i t i o n s−>fo rA l l ( t r a n s i t i o n |

13 t r a n s i t i o n . i sContainedWithinJavaClass ( javaClass , metastate ) )

14 endif

Listing 39: SyncStateDiagram

1 [ Context : UML: : Trans i t i on ]

2 [ Arguments : Java : : Class , UML: : State ]

3 l e t j a v a c l a s s : c l a s s i f i e r s : : Class = javaClas s in

4 l e t metastate : uml : : State = mstate in

5 l e t t r i g g e r : uml : : Tr igger = s e l f . t r i g g e r−>asSequence()−> f i r s t ( ) in

6 l e t jMethod : members : : ClassMethod = j a v a c l a s s . getMethods()−> s e l e c t (method |

7 method . name = t r i g g e r . event . oclAsType (uml : : CallEvent ) . operat ion . name and

8 method . oclIsTypeOf (members : : ClassMethod ) )

9 −>c o l l e c t ( oclAsType (members : : ClassMethod))−>asSequence()−> f i r s t ( ) in

10 i f jMethod <> nu l l then

11 (

12 (

13 s e l f . t a r g e t = metastate and s e l f . guard = nu l l and

14 jMethod . statements−>ex i s t s ( statement |

15 l e t methodcal l : r e f e r e n c e s : : MethodCall =

16 i f statement . oclIsTypeOf ( r e f e r e n c e s : : MethodCall ) then

17 statement . oclAsType ( r e f e r e n c e s : : MethodCall )

18 else

19 statement . getFirstChildByType ( ( r e f e r e n c e s : : MethodCall ) . o c lC l a s s ( ) )

20 endif in

21 i f methodcal l <> nu l l then

22 methodcal l . t a r g e t . name = ' n o t i f yA l l '

23 else

75



24 f a l s e

25 endif )

26 ) or (

27 s e l f . t a r g e t <> metastate and

28 not ( s e l f . guard . s p e c i f i c a t i o n . oclAsType (uml : : OpaqueExpression ) . body−>isEmpty ( ) ) and

29 s e l f . methodLeadsToState ( jMethod . statements−>asSequence ( ) )
30 )

31 ) else f a l s e endif

Listing 40: isContainedWithinJavaClass

1 [ Context : UML: : Trans i t i on ]

2 [ Arguments : Sequence{Java : : Statement } ]

3 l e t statements : Sequence ( statements : : Statement ) = incStatements in

4 l e t targetStatement : statements : : Statement =

5 s e l f . t a r g e t . oclAsType (uml : : State ) . javastatement in

6 statements−>ex i s t s ( statement |

7 statement . oclIsTypeOf ( statements : : Condit ion ) implies

8 statement . oclAsType ( statements : : Condit ion ) . cond i t i on . oc lToStr ing ( ) =

9 s e l f . guard . s p e c i f i c a t i o n . oclAsType (uml : : OpaqueExpression ) . body−>f i r s t ( ) and

10 i f statement . oclAsType ( statements : : Condit ion )

11 . statement . oclIsTypeOf ( statements : : Block ) then

12 statement . oclAsType ( statements : : Condit ion )

13 . statement . oclAsType ( statements : : Block )

14 . statements−>ex i s t s ( statement | statement = targetStatement )

15 else

16 statement . oclAsType ( statements : : Condit ion ) . statement = targetStatement

17 endif

18 )

Listing 41: methodLeadsToState

76



References

[1] D. C. Schmidt, �Guest editor's introduction: Model-driven engineering,�

IEEE Computer, vol. 39, no. 2, pp. 25�31, 2006.

[2] S. Sendall and W. Kozaczynski, �Model transformation: The heart and

soul of model-driven software development,� IEEE Software, vol. 20, no. 5,

pp. 42�45, 2003.

[3] Y. Zheng and R. N. Taylor, �Enhancing architecture-implementation con-

formance with change management and support for behavioral mapping,�

in ICSE, pp. 628�638, 2012.

[4] O. M. Group, Uni�ed Modeling Language UML Version 2.4.1

http://www.omg.org/spec/UML/2.4.1. OMG, 2010.

[5] B. Hailpern and P. L. Tarr, �Model-driven development: The good, the bad,

and the ugly,� IBM Systems Journal, vol. 45, no. 3, pp. 451�462, 2006.

[6] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse

Modeling Framework 2.0. Addison-Wesley Professional, 2nd ed., 2009.

[7] D. Cassou, E. Balland, C. Consel, and J. L. Lawall, �Leveraging software

architectures to guide and verify the development of sense/compute/control

applications,� in ICSE, pp. 431�440, 2011.

[8] J. Aldrich, C. Chambers, and D. Notkin, �Archjava: connecting software

architecture to implementation,� in ICSE, pp. 187�197, 2002.

[9] N. Ubayashi, J. Nomura, and T. Tamai, �Archface: a contract place where

architectural design and code meet together,� in Software Engineering,

2010 ACM/IEEE 32nd International Conference on, vol. 1, pp. 75�84,

2010.

[10] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G. Zelesnik,

�Abstractions for software architecture and tools to support them,� IEEE

Trans. Software Eng., vol. 21, no. 4, pp. 314�335, 1995.

[11] A. Reder and A. Egyed, �Computing repair trees for resolving inconsisten-

cies in design models,� in Automated Software Engineering (ASE), 2012

Proceedings of the 27th IEEE/ACM International Conference on, pp. 220�

229, 2012.

77



[12] R. B. France and B. Rumpe, �Model-driven development of complex soft-

ware: A research roadmap,� in FOSE, pp. 37�54, 2007.

[13] A. van Deursen, P. Klint, and J. Visser, �Domain-speci�c languages: An

annotated bibliography,� SIGPLAN Notices, vol. 35, no. 6, pp. 26�36, 2000.

[14] C. Gane, Computer-aided software engineering - the methodologies, the

products, and the future. Prentice Hall, 1990.

[15] M. Gardner, �The fantastic combinations of John Conway's new solitaire

game �life�,� Scienti�c American, vol. 223, pp. 120�123, Oct. 1970.

[16] Z. Micskei and H. Waeselynck, �The many meanings of uml 2 sequence

diagrams: a survey,� Software and System Modeling, vol. 10, no. 4, pp. 489�

514, 2011.

[17] A. Egyed, �Automatically detecting and tracking inconsistencies in software

design models,� IEEE Trans. Software Eng., vol. 37, no. 2, pp. 188�204,

2011.

[18] I. Groher, A. Reder, and A. Egyed, �Incremental consistency checking of

dynamic constraints,� in FASE, pp. 203�217, 2010.

[19] �IBM Rational Software Architect https://www.ibm.com/developerworks/

rational/products/rsa/ ,2013..�

[20] �ArgoUML http://argouml.tigris.org/ ,2013..�

[21] �Eclipse http://www.eclipse.org/ ,2013..�

[22] �GCC, the GNU Compiler Collection http://gcc.gnu.org/ ,2013..�

[23] A. Reder and A. Egyed, �Model/analyzer: a tool for detecting, visualizing

and �xing design errors in UML,� in ASE (C. Pecheur, J. Andrews, and

E. D. Nitto, eds.), pp. 347�348, ACM, 2010.

[24] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein, �xlinkit: a con-

sistency checking and smart link generation service,� ACM Trans. Internet

Techn., vol. 2, no. 2, pp. 151�185, 2002.

[25] C. Nentwich, W. Emmerich, A. Finkelstein, and E. Ellmer, �Flexible consis-

tency checking,� ACM Trans. Softw. Eng. Methodol., vol. 12, no. 1, pp. 28�

63, 2003.

78



[26] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: el-

ements of reusable object-oriented software. Boston, MA, USA: Addison-

Wesley Longman Publishing Co., Inc., 1995.

[27] OMG, ISO/IEC 19507 Information technology - Object Management Group

Object Constraint Language (OCL). ISO, 2012.

[28] �Model and Code Consistency Checking: Prototype Implementation.

http://www.sea.uni-linz.ac.at/ Tool-Section, 2013.�

[29] �MDT/UML2 http://wiki.eclipse.org/mdt-uml2 ,2013..�

[30] F. Heidenreich, J. Johannes, S. Karol, M. Seifert, and C. Wende, �Deriva-

tion and re�nement of textual syntax for models,� in ECMDA-FA, pp. 114�

129, 2009.

[31] F. Heidenreich, J. Johannes, M. Seifert, and C. Wende, �Closing the gap

between modelling and java,� in SLE, pp. 374�383, 2009.

[32] �TIOBE Programming Community Index

http://www.tiobe.com/content/paperinfo/tpci/index.html (August

2013).�

[33] �Eclipse Public License, Version 1.0 (EPL-1.0)

http://opensource.org/licenses/epl-1.0 ,2013..�

[34] J. Nielsen, Usability engineering. Academic Press, 1993.

[35] A. Reder and A. Egyed, �Incremental consistency checking for complex

design rules and larger model changes,� in MoDELS, pp. 202�218, 2012.

[36] F. Ciccozzi, A. Cicchetti, and M. Sjödin, �Towards a round-trip support for

model-driven engineering of embedded systems,� in EUROMICRO-SEAA,

pp. 200�208, 2011.

[37] C. Project, D2.1 CHESS Modelling Language and Editor. ARTEMIS JU

Distribution, 2013.

[38] O. M. Group, Action Language for Foundational UML (ALF)

http://www.omg.org/spec/ALF/1.0.1/Beta3/PDF. OMG, 2013.

[39] N. Medvidovic and R. N. Taylor, �A classi�cation and comparison frame-

work for software architecture description languages,� IEEE Trans. Soft-

ware Eng., vol. 26, no. 1, pp. 70�93, 2000.

79



[40] J. Aldrich, C. Chambers, and D. Notkin, �Architectural reasoning in arch-

java,� in ECOOP, pp. 334�367, 2002.

[41] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Lo-

ingtier, and J. Irwin, �Aspect-oriented programming,� in ECOOP, pp. 220�

242, 1997.

[42] G. C. Murphy, D. Notkin, and K. J. Sullivan, �Software re�exion mod-

els: Bridging the gap between design and implementation,� IEEE Trans.

Software Eng., vol. 27, no. 4, pp. 364�380, 2001.

[43] Z. Diskin, Y. Xiong, and K. Czarnecki, �Specifying overlaps of heteroge-

neous models for global consistency checking,� in MoDELS Workshops,

pp. 165�179, 2010.

[44] Z. Diskin, �Towards generic formal semantics for consistency of heteroge-

neous multimodels,� Jan 2011.

80



MARKUS RIEDL EHRENLEITNER
+436763808548 � marx riedl@gmx.at

Lahn 1 � Regau, Austria 4844

EDUCATION

Johannes Kepler University, Linz October 2011 - Present
MSc. in Computer Science
Minor in Software Engineering

Johannes Kepler University, Linz October 2008 - July 2011
BSc. in Computer Science

INTERNSHIPS

Abatec, Group AG July - August 2012
Software Analyst Regau, Austria

· Feasibility analysis for a parking car detection system.

Abatec, Group AG August - September 2011
Software Engineer Regau, Austria

· Implement a GUI in WPF for a in house product.

Abatec, Group AG August 2010
Software Engineer Regau, Austria

· Produce a testing environment for a cow feeding system based on an embedded linux plattform.

Lenzing Instruments July 2009
Software Engineer Lenzing, Austria

· Developer at the currently to be developed framework.

Lenzing Instruments May - September 2008
Software Engineer Lenzing, Austria

· Developing the YIS 2000, yarn inspection system.

TECHNICAL STRENGTHS

Computer Languages Java, C#, Knowledge of C++, C, OCL, Haskell, Prolog
Protocols & APIs WPF, XML, UML2, EMF
Databases MySQL, Microsoft SQL, HSQLDB
Tools GIT, SVN, Vim, Visual Studio, Eclipse, IBM RSA



Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Masterarbeit selbstständig

und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und

Hilfsmittel nicht benutzt bzw. die wörtlich oder sinngemäÿ entnommenen

Stellen als solche kenntlich gemacht habe. Die vorliegende Masterarbeit ist mit

dem elektronisch übermittelten Textdokument identisch.

Linz, am 17.September 2013 Markus Riedl Ehrenleitner

82


